

4 Channel Power Meter

LMG450

User manual

Status: 2009/02/17

© Copyright 2009 ZES ZIMMER Electronic Systems GmbH Tabaksmühlenweg 30 D-61440 Oberursel (Taunus), FRG phone ++49 (0)6171 628750

fax ++49 (0)6171 52086

e-mail: sales@zes.com

Internet: http://www.zes.com

No part of this document may be reproduced, in any form or by any means, without the permission in writing from ZES ZIMMER Electronic Systems GmbH.

Regard DIN 34!

We reserve the right to implement technical changes at any time, particularly where these changes will improve the performance of the instrument.

EG-Konformitätserklärung

CE Conformity Declaration

für das

for the

4 Kanal Leistungsmeßgerät

4 Channel Powermeter

LMG450

Hiermit wird bestätigt, daß das oben aufgeführte Gerät den Anforderungen der Richtlinien (2004/108/EG) und (2006/95/EG) der Europäischen Gemeinschaft entspricht.

Diese Erklärung gilt für alle Geräte, die nach anhängenden Fertigungsunterlagen - die Bestandteil dieser Erklärung sind- hergestellt werden.

Zur Beurteilung der Sicherheit und elektromagnetischen Verträglichkeit wurden folgende Normen herangezogen:

We certify that the above device accomplishes with all requirements which are defined in the directives (2004/108/EC) and (2006/95/EC) of the European Community.

This certificate is valid for all devices that are produced according to the appending production instructions (which are a part of this certificate).

For the judgement of safety and electromagnetic compatibility of the product the following standards were used:

EN61010-1:2001

EN61326-1:2006

EN61000-3-2:2006

EN61000-3-3:1995+A1:2001+A5:2005

Diese Erklärung wird vom Hersteller

This certificate of the manufacturer

Z E S ZIMMER Electronic Systems GmbH Tabaksmühlenweg 30 D-61440 Oberursel

ahgegeben durch

is given by

Georg Zimmer, Geschäftsführer

Oberursel, 1. Juni 2007

Georg Zimmer, Geschäftsführer

Test Certification

Instrument Type:	
Serial Number:	
ZES ZIMMER Electronic Systems GmbH certifies all specifications contained in the delivered user remechanically and electrically safe condition.	
The measuring instruments, tools and standards calibration are calibrated according to ISO9000 (t correspond to the standard of precision required to	raceable to national standards) and
	ZES ZIMMER Electronic Systems
Date	Tabaksmühlenweg 30
	D-61440 Oberursel Germany
Quality Control	
•	

Request/order for a calibration

Instrument:	O LMG90	O LMG95	0) LMG310
	O LMG450	O LMG500	0	other:
Serial number:				
For the above ins	trument the followi	ng should be done	: :	
O Calibration	O Adjustm	ent with following	g	O Input calibration, adjustment and
(order-no KR-xx	(x) calibration	(order-no JKR-xx	(xx)	output calibration (order-no KJKR-xxx)
O I don't want	to get the latest soft	tware in the instru	ment	(free of charge). I want to keep the
actual implemen	ted software version	n.		
Note:				
Calibration is only	to proof the differer	nces between the in	strum	nent and the 'true' values
Adjustment is to se	et-up an instrument t	o meet its specifica	tions.	
Company	:			
Street	:			
ZIP/City	:			
Country	:			
Email	:			
Name (responsible	le for			
calibration)	:			
Phone	:			
Fax	:			
Department	:			
Customer number	r (if available):			
Date:		Sign:		
Please send this p	paper via post or far	x to:		
-	Electronic Systems			Tel. +49 (0)6171/628750
Tabaksmühlenwe	eg 30			Fax +49 (0)6171/52086
D-61440 Oberurs	sel			Email sales@zes.com
Germany				

Table of contents

1 Instructions and Warnings	19
1.1 Safety Instructions	
·	
2 General	23
2.1 Features and application areas	23
2.2 Usage of the manual	24
2.3 General handling of the instrument	
2.4 The group concept	
2.5 Linked values, star to delta conversion (option L45-O6)	
3 Installation	37
3.1 Unpacking and putting into operation	37
3.2 General set-up	
3.3 Connections of the LMG450	
3.3.1 Measuring circuit for typical line applications using the internal current path	
3.3.2 Measuring circuit for measuring efficiency of 3/1phase systems	
3.3.3 Measuring circuit (typical) for star to delta conversion (option L45-O6)	
3.3.4 Aron wiring	
3.3.5 Measuring circuit for measuring efficiency of 3/3phase systems	
3.3.6 Measuring circuit using an external current sensor	
3.3.7 Measurement of high currents	
3.3.8 Measurements at middle and high voltage systems	
3.3.9 Measurements at middle and high voltage systems without N	
5.5.10 Wedsurements at initiale and high voltage systems without iv	
4 Instrument controls	47
4.1 Front panel	
4.2 Rear panel	
4.3 Display	
4.3.1 Status line	
4.4 General menues	
4.4.1 Misc.	
4.4.2 IF/IO	
4.4.3 Custom menu	
4.4.4 Script/Formula editor	60
4.4.5 Saving and restoring configurations	70
4.5 Entering identifiers, characters and text	70
4.6 Entering numerical values	75
5 Normal measuring mode	77
5.1 Measuring configuration (Measuring)	77
5.1.1 Globals tab	77
5.1.2 Group A/P tob	79

	5.2 Measuring ranges (Range)	81
	5.2.1 Group A/B tab	81
	5.2.2 Sense/More tab	82
	5.3 Definition of measuring values	83
	5.3.1 Values from single measuring	
	5.3.2 Integrated values	
	5.3.3 Total values	90
	5.4 Display of values	91
	5.4.1 Default	92
	5.4.2 Voltage	93
	5.4.3 Current	93
	5.4.4 Power	
	5.4.5 Energy	
	5.4.6 Graphical display	
	5.4.7 Custom menu	
	5.5 Storage of values	101
6	5 prCE-Harmonic measuring mode	103
	6.1 Measuring configuration (Measuring)	103
	6.1.1 Global tab	103
	6.1.2 Group A/B tab	104
	6.2 Measuring ranges (Range)	105
	6.3 Definition of measuring values	105
	6.4 Display of values	106
	6.4.1 Default	
	6.4.2 Voltage	107
	6.4.3 Current	107
	6.4.4 Power	108
	6.4.5 Long time evaluation	
	6.4.6 Graphical display	
	6.4.7 Custom menu	
	6.5 Storage of values	
	6.6 Precompliance tests according EN61000-3-2	111
_		
7	CE-Flicker measuring mode (option L45-O4)	113
	7.1 Measuring configuration (Measuring)	113
	7.1.1 Globals tab	
	7.1.2 Ztest/Zref tab	114
	7.2 Measuring ranges (Range)	114
	7.3 Definition of measuring values	114
	7.4 Display of values	
	7.4.1 Default	
	7.4.2 Voltage	
	7.4.3 Current	
	7.4.4 Power	116
	7.4.5 Flicker (Int. Val)	116
	7.4.6 Graphical display	117

	7.4.7 Custom menu	117
	7.5 Storage of values	117
	7.6 Tests according EN61000-3-3	
8	100 Harmonics measuring mode (option L45-O8)	119
	8.1 Measuring configuration (Measuring)	
	8.2 Measuring ranges (Range)	
	8.3 Definition of measuring values	
	8.4 Display of values	
	8.4.1 Default	
	8.4.2 Voltage	
	8.4.3 Current	
	8.4.4 Power	122
	8.4.5 Graphical display	
	8.4.6 Custom menu	
	8.5 Storage of values	123
^	T 1 () 1 45 05	105
9	Transient mode (option L45-O5)	
	9.1 Measuring configuration (Measuring)	
	9.1.1 Globals tab	
	9.1.2 GroupA/B tab	
	9.2 Measuring ranges (Range)	
	9.3 Display of values	
	9.3.1 Graphical display	
	9.4 Storage of values	128
1(O Interfaces (IEEE option L45-O1)	129
- `	10.1 Short syntax description	
	10.2 Commands	
	10.2.1 IEEE488.2 common commands	
	10.2.2 :CALCulate commands	
	10.2.3 :DISPlay commands	
	10.2.4 :FETCh and :READ commands	140
	10.2.5 :FORMat commands	
	10.2.6 :INITiate commands	
	10.2.7 :INPut commands	
	10.2.8 :INSTrument commands	
	10.2.9 :MEMory commands	
	10.2.11 :SOURce commands	
	10.2.12 :STATus commands	
	10.2.13 :SYSTem commands.	
	10.2.14 :TRIGger commands	
	10.2.15 Special commands	221
	10.2.16 Example 1	
	10.2.17 Example 2	
	10.2.18 Testing the interface using a terminal program	223

10.2.19 SCPI command Example	223
10.2.20 SHORT command Example	225
10.3 Physical devices	228
10.3.1 The serial interfaces	
10.3.2 IEEE488.2	229
10.3.3 Parallel Port	229
11 Logging of values to drives, printer and interfaces	231
11.1 Start of logging	
11.2 End of logging	
11.3 Logging profiles (output devices)	
11.3.1 Output intervals	
11.4 Output formats	
11.5 Remarks, header lines	
11.6 Storage media	
11.6.1 Floppy disk drive	
11.6.2 Memory card drive	
11.6.3 USB memory stick	
11.7 Import of data into PC programs	
11.7.1 Data exchange via storage media	
11.7.2 Data exchange via serial interface	
11.7.3 Country dependent numbers	
11.7.4 Reading data into EXCEL	
11.8 Error messages	239
12 Miscellaneous	241
12.1 Frequently asked questions	
12.1.1 Accuracy of measured and computed values	
12.1.2 Accuracy of non sinusoidal signals	
12.2 Function fault	244
12.3 Maintenance	250
12.3.1 Calibration	
12.3.2 Adjustment	
12.3.3 Zero adjustment of the instrument	
12.3.4 Fans	251
12.3.5 Battery	
12.3.6 Software update	
12.4 Use with an inverter	252
13 Technical data	253
13.1 General	
13.2 Display of values	
13.3 Measuring channels	
13.3.1 Sampling	
13.3.2 Ranges	
13.3.3 Accuracy	

13.3.4 Special transformer adjustment (L45-O12)	258
13.3.5 Modified voltage channel for 1kV input (L45-O15)	258
13.4 ZES current sensors	258
13.5 Filter	259
13.5.1 HF Rejection filter	259
13.6 prCE Harmonics	260
13.7 CE Flicker	260
13.8 HARM100 Mode	260
13.9 Processing signal interface (option L45-O3)	261
13.9.1 Analogue inputs	
13.9.2 Analogue outputs	
13.9.3 Digital inputs	
13.9.4 Frequency inputs	
13.9.5 Digital outputs	
13.9.6 Auxiliary supply	
13.9.7 Frequency/direction input	
13.11 Frequency measuring	
13.12 Scope memory	264
14 System design	265
14.1 Further connectors	
14.1.1 External Synchronisation (Sync.)	265
14.1.2 External Current Sensor	
14.2 Functional block diagram LMG450	270
14.3 Functional block diagram voltage channels	271
14.4 Functional block diagram current channels	272
14.5 Functional block diagram computing unit	273
14.6 Functional block diagram processing signal interface	
15 Glossary	275
13 Glossary	213
16 Common Index	287
17 Intenfere common din des	200
17 Interface command index	306
List of figures	
Figure 1: Measuring menu	25
Figure 2: Allocations of the different linked values	
Figure 3: Measuring circuit 3 phase system with neutral	
Figure 4: Measuring circuit for measuring efficiency (3/1phase)	
Figure 5: Star to delta conversion	
Figure 6: Measuring circuit with current and voltage transformers in Aron wiring	41

Figure 7: Measuring circuit for measuring efficiency (3/3phase)	42
Figure 8: Measuring circuit with external current sensor	42
Figure 9: Measuring circuit for measuring high currents with transformers, voltage di	rectly 43
Figure 10: Measuring circuit for measuring in middle and high voltage systems	44
Figure 11: Measuring circuit for measuring in middle and high voltage sytems without	ıt N Using
artificial midpoint	45
Figure 12: Measuring circuit for measuring in middle and high voltage sytems without	ıt N Using
star to delta conversion	46
Figure 13: Front panel of the instrument	47
Figure 14: Rear panel of the instrument.	48
Figure 15: Status lines with 3 different wirings	50
Figure 16: Misc. menu	52
Figure 17: Interface Setup	53
Figure 18: Analogue inputs	56
Figure 19: Analogue outputs	56
Figure 20: Digital inputs	57
Figure 21: Limit menu	58
Figure 22: Script editor	60
Figure 23: Measuring menu in normal mode	81
Figure 24: Range menu	81
Figure 25: Allocation of the different linked values	84
Figure 26: Default display with one and four channels	93
Figure 27: Scope display with split off/on	97
Figure 28: The plot display; split off	97
Figure 29: The plot display; split on	99
Figure 30: Vector (Fresnel) diagramm	100
Figure 31: Measuring menu in prCE-Harm mode	104
Figure 32: Display of voltages in prCE-Harm mode	107
Figure 33: Long time evaluation of harmonics	109
Figure 34: Graphical display of harmonics	110
Figure 35: Measuring menu in CE-Flicker mode	114
Figure 36: Evaluation of flicker measurement	116
Figure 37: Measuring menu in Harm100 mode	119
Figure 38: Graphical display of harmonics	123
Figure 39 Measuring menu in transient mode	126
Figure 40: Keynumbers	214
Figure 41: COM A connector	228
Figure 42: COM B connector	229
Figure 43: Dimensions of LMG450	254
Figure 44: Processing Signal Interface Connector	262
Figure 45: Sync connector	265

Figure 46: External current sensor connector	269
Figure 47: Functional block diagram LMG450	270
Figure 48: Functional block diagram voltage channels	271
Figure 49: Functional block diagram current channels	272
Figure 50: Functional block diagram computing unit	273
Figure 51: Functional block diagram processing signal interface	274

1 Instructions and Warnings

1.1 Safety Instructions

This instrument conforms to the IEC61010-1 guide lines concerning the protection of electrical instrumentation and has left the factory in a mechanically and electrically safe condition. To maintain safe operation, the user must follow the instructions and warnings contained in this manual. The instrument satisfies the requirements of **protection class I** (protective earthing). Accessible metal parts of the instrument are tested with respect to the mains connection using a potential of 1500V/50Hz. Before connecting the apparatus to the mains supply, ensure that the voltage displayed on the type plate equals the available mains supply voltage. A possibly installed power supply selector has to be set up. The mains plug must only be connected to an earthed mains outlet. The earth connection must not be discontinued or broken by using an extension lead without earth connection. The instrument must be connected to the mains supply before any measurement or control circuits are connected to it. Any disconnection of the earth lead inside or outside of the instrument will endanger the operating personal. Deliberate disconnection of the earth is not permitted. When the instrument is used in combination with other instruments, then proceed as follows:

The external earth connector on the back of the instrument must not be used to earth other electrical equipment. It is only intended to provide additional earthing of the instrument in case an error occurs in the circuit under test which may cause an earth current to flow in excess of 10A which cannot be carried by the mains supply cable. If this further earthing cannot be implemented, then the measuring circuit must be suitably fused prior to its connection to the instrument. In this case, it is necessary to connect the measuring instrument to an earth connection point via the earth connector using a conductor with sufficient cross section. If this is not possible, the instrument has to be connected to the circuit to be tested via adequate fuses. The measuring inputs are isolated to case for operating voltages up to 600V according to protection class I.

By opening the instrument components are exposed which may be raised to a hazardous potential. All voltage sources must be disconnected from the instrument before any instrument covers are removed for the purpose of calibration, service, repair or changing components. When access is required for calibration, service or repair, only suitably qualified personnel are permitted access to an opened and energised instrument.

Fuses may only be replaced with the same ratings and the same types. The use of repaired or short circuited fuses is not permitted. The instrument should be disconnected and disabled from accidental use when it is suspected that its safe operation cannot be warranted. The required

repair work must then be carried out by a suitably qualified person who is familiar with any dangers involved.

It must be considered unsafe to operate the instrument:

- if there is visual evidence of physical damage
- if the instrument fails to operate correctly
- after long-term storage under unfavourable circumstances
- if there are condensation forms due to excessive temperature changes
- following rough transport conditions

If the instrument was opened, a high voltage test according to the technical data and a test of the protective conductor are necessary following the closing of the instrument.

Storage temperature range: -20°C to +55°C

Climatic class: KYG according to DIN 40040

0°C...40°C, humidity max. 85%, annual average 65%, no dewing

The instrument conforms to protection class I. A suitable mains cable is supplied with the instrument for connection to an earthed mains supply point. When in use the unit must be securely earthed; continuity of the mains earth connection should be checked. Make sure that attention is paid to the following points:

Warning!

The green/yellow safety jack on the back of the instrument must be used for additional earthing in case an earth current in excess of 10A might result accidentally in the system under test. Since the earthing conductor of the mains supply is unable to carry such currents, the instrument have to be connected to a suitable earth point via an adequately rated cable. If reliable earthing cannot be realised, the connections between the system under test and the instrument must be fused appropriately. The earth terminal on the instrument must not be used as the only earth connection for the instrument nor must the test circuit be earthed from this terminal.

Attention!

Before connecting the mains cable to an electricity supply, confirm that the mains supply voltage corresponds to the voltage printed on the model's identification plate.

Warning!

Remove all power supplies to a test circuit before connecting a probe for measurement purposes.

Attention!

The following maximum values must not be exceeded:

I*, I: maximum 18A (short-time 50A), maximum

600V@CATIII operating voltage against earth, instrument

casing and voltage channel.

Sensor Input: maximum 8V signal voltage.

U*,U: maximum 600V (short-time 1500V) between U and U*,

maximum 600V@CATIII operating voltage against earth,

instrument casing and current channel.

Attention!

The jack for the Sensor Input is not isolated against earth! So it is not allowed to measure currents without an isolating sensor (e.g. current clamps). Shunt should not be used.

Attention!

Use only cables with **safety** connectors and sufficient cross section (obtainable from the equipment manufacturer). Please take care that this cables have a sufficient testing voltage and are useable for the wanted over voltage category.

Attention! Cables of external sensors like clamps are often designed to operate with low voltages (<10V). For the operation itself this is ok, but if this cables touch a bare conductor this can be dangerous!

2 General

The 4 Channel Power Meter LMG450 extends the ZES multimeter product range for power measurement. It benefits from experience and know-how gained from the successful ZES LMG90, LMG95 and LMG310 series.

Due to the high sampling rate which is used in this instrument, it is now possible to make accurate power and efficiency measurements in 1 to 4 phase system configurations with a variety of load and signal components containing frequencies in the precision range from DC to 20kHz.

Monitoring and storing transients, harmonic analysis as well as time domain views of signals' waveform on the graphical display (oscilloscope mode) are all available with this instrument.

A special feature of the instrument is the simple, direct and intuitive topology of the operating buttons. The display of different quantities and menus for setting up the instrument is normally achieved with only a single touch of one button.

2.1 Features and application areas

Voltages and currents can be measured over a wide dynamic range. This makes the LMG450 instrument suitable for almost all professional measurement applications such as converter-fed alternating current machines and power- and energy electronic applications. Various wire- and phase configurations can be pre-selected to suit any required user application.

Another feature of the instrument is to suppress high frequency harmonics by means of selectable filters. This makes it possible to take only the fundamental harmonics into account, which build the torque and the mechanical power at the motor output.

Due to the exceptionally good common mode rejection of each current/voltage input channel it is possible to measure currents and voltages which float up to 600V and at high frequencies with respect to earth. This is particularly important for measurements in inverter- and rectifier circuitry and in switched mode power supply applications.

The harmonics measuring mode (standard in the base instrument) permits the precompliance measurement of high frequency harmonic reflections in networks according to IEC61000-3-2 standard.

The extended harmonic mode up to the 99th available as option provides to obtain the energy distribution over different frequency ranges and can thus investigate their relative contribution to the total consumption of energy.

The LMG450 is suitable for measurements in electromagnetically noisy environments to IEC61000-4. This feature is of particular importance for measurements in power electronics.

Other applications include the measurement of reactive and non-linear component losses (such as in transformers, chokes, motors, capacitors, power supplies), the computation of the efficiencies of photovoltaic modules and other alternative energy components. Further on you can calculate energy and charge, e.g. of accumulators.

A further highlight are the special ZES ZIMMER current clamps. This unique accessories combine both, the easy usage of clamp-on current transformers with the high accuracy of fix installed current transformers with primary winding for small currents from 0.1A to 80A. They are compensated for very small errors for amplitude and phase over frequency. So they can be used in power measurement in a wide current and frequency range. With them you can measure with power!! accuracies up to 0.3% in the frequency range 5Hz to 20kHz. So it is possible to measure the output of a PWM inverter without interrupting the wires.

2.2 Usage of the manual

The LMG450 is operated either by pressing buttons with hard-wired functions (in the following characterised by *italic* style), or by using softkeys (**bold** style) which will perform tasks that depend on a particular menu choice. This approach makes it possible to call all functions using a limited number of buttons without a need to call double or triple functions with one button. There are no menu trees so that the user does not need to fight his way through a menu jungle in order to call a particular display. Each menu can be called by simply pressing a single button.

The upper 6 buttons of the numerical keypad (*Default, Current, Voltage, Power, Int. Value and Graph*) enable the display of the standard measuring values by simply pressing a single button. In this menu a specified selection of the respective measuring values can be displayed using the soft keys.

The menus for the parameter set-up is called via the lower 6 buttons of the numerical keypad (*Measuring, Int. Time, Custom, Range, Misc., IF/IO*,). Thereby, all the instrument parameters can be adjusted using the soft keys.

Despite the simple and intuitive operation of the controls, it is recommended that even experienced users should carefully read and work through this manual to eliminate operational mistakes and to explore the full capability of the instrument.

There are following measuring modes:

normal mode
 In this mode the LMG450 works as a power-meter with integrated scope function. The

TRMS values of voltage and current, the power and derived values are measured via the power measuring channels.

• prCE harmonics mode

In this mode the LMG450 works as an harmonic analyser. All measurements are judged according to the standards. There is only a minimum of settings to prevent set-up errors. This mode can only be used for precompliance measurings.

• CE flicker mode

In this mode the LMG450 works as a full compliance flicker meter. All measurements are judged according to the standards. There is only a minimum of settings to prevent set-up errors.

• Harm100 mode

In this mode the LMG450 works as an harmonic analyser for 100 harmonic components. You get many values like phase angles and the power at each frequency.

• Transient mode

In this mode the LMG450 works as a transient recorder. You can define special events when the storage of values should be triggered.

The active mode depends on the setting in the *Measuring* menu. Some other menus also depend on this setting (see the respective description).

For each measuring mode you find a chapter in the manual. Inside this chapter the different menus for this operating mode are described.

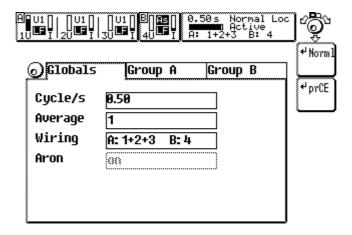


Figure 1: Measuring menu

2.3 General handling of the instrument

The main menus are reached by pressing the corresponding key of the keypad. In many menus you find softkeys which change their function depending on the menu. Above the softkey list you have symbols for the actual behaviour of the rotary knob:

blank The rotary knob is inactive (neither rotating nor pushing has any effects)

By rotating the knob, you can select different tabs. By pushing the knob, you get a new selection of softkeys in a lower menu layer.

By rotating the knob, you can select different actions (depends on the context of the menu). By pushing the knob, you go back one menu to the upper menu layer.

You are entering a text. The effect of the rotating depends on the softkey settings. By pushing the knob, the character at the cursor position of the selection list is copied to the input field. See also '4.5, Entering identifiers, characters and text'

All softkeys are of following types. They are identified by the small symbol in the upper left corner. The text in the softkeys depends on the context of the menu.

<u>Execution softkey</u>. The action described by the text is executed immediately without the possibility to cancel it.

<u>Branch softkey</u>. After pressing this softkey a new list of softkeys will appear. Now you can select one of this new softkeys or you can cancel the action be pressing *ESC*.

<u>List softkey</u>. After pressing this softkey you get a selection list. You can choose one element of the list (with the rotary knob) and then you can confirm your choice by pressing the rotary knob or *ENTER* or you can cancel the selection by pressing *ESC*.

<u>Text edit softkey</u>. After pressing this softkey you can enter identifiers (for example in the script editor or to output values via the analogue outputs). This kind of text input is described in '4.5, Entering identifiers, characters and text'

<u>Rotary knob action softkey</u>. This is a group of one or more softkeys. The softkey with the knob symbol is the actual active (in this case the knob would move the window). All inactive softkeys have no symbol in the upper left corner. If you in this example press on **Zoom** the symbol will change to this softkey.

If you have a small box like the '-x-' in the above Zoom button, the text in this box represents the actual setting. In the above example you would zoom the signal in X direction. If you press again this button, the content of the small box changes to '-y-' and you would zoom the signal in Y direction.

† ①

Count softkey. After pressing this softkey you can adjust the depending values with the opening up and down buttons in fixed steps.

⊖Start Time

<u>Time softkey</u>. After pressing this softkey you can adjust a time setting. The values for hours, minutes and seconds must be separated by a colon, pressing the button *Misc*. Then you can confirm your adjustments by pressing the rotary knob or *ENTER* or you can cancel the selection by pressing *ESC*.

⊡Start Date

<u>Date softkey</u>. After pressing this softkey you adjust a date. The values for day, month and year must be separated by a colon, pressing the button *Misc*. Then you can confirm your adjustments by pressing the rotary knob or *ENTER* or you can cancel the selection by pressing *ESC*.

∙DUR

<u>Time duration softkey</u>. After pressing this softkey you can adjust a time duration, in which e.g. an integration of values should be made. You can set up the duration in several data formats e.g. in seconds without a hyphen or by values for hours, minutes and seconds separated by a colon (pressing the button *Misc.*). Confirm your choice by pressing the rotary knob or *ENTER* or you can cancel the selection by pressing *ESC*.

8 Scale

<u>Digit softkey</u>. After pressing this softkey you must enter numbers. Then you can confirm your choice by pressing the rotary knob or *ENTER* or you can cancel the selection by pressing *ESC*.

2.4 The group concept

The four power measuring channels allow a lot of measuring capabilities, but they require also a special handling. For this reason we have used so called 'groups'. In one group you find one or more measuring channels which belong logically together. A group is a logical unit and there are several menus which display values out of one group or which set-up parameters for one group (e.g. ranges). The groups are defined by the selected wiring (see the chapters about the measuring menu).

You can have three principle measuring situations:

• You measure with all 4 channels (group A) at the same system (which means you have the same frequency at each input). Examples for such systems are 4 phase motors driven by

frequency converters or standard main supply with L1, L2, L3, N and PE (in this case you could for example measure I_N and U_{NPE} !)

In this situation there is no group B!

The standard wiring for this is '4+0 Channels'.

• You measure with 3 channels (group A) at one system and with the 4th channel (group B) at another system. Examples for such systems are standard 3 phase systems with one phase output, motor applications at frequency converters where the torque is measured with the 4th channel or car applications, where the 4th channel measures the DC power of the battery. The standard wiring for this is '3+1 Channels'.

If you have installed the option star to delta conversion, (L45-O6) you have three further possible wirings:

```
'3+1, U*I*->UΔΙΔ'
'3+1, UΔΙ*->UΔΙΔ'
'3+1, UΔΙ*->U*I*'
```

• You measure with 2 channels (group A) at one system and with the other two channels (group B) at the second system. Examples for this could be three phase converter from 50Hz to 60Hz.

Both groups are measured in 2 wattmeter method. There are two possible applications:

You measure a 3phase, 3wire system (aron circuit, **Aron** set to on)

You measure a 2phase, 3wire system.(**Aron** set to off).

The standard wiring for this is '2+2 Channels'. If you have installed the option star to delta conversion (L45-O6) you have two further possible wirings:

```
'2+2, UΔI*->UΔIΔ'
'2+2, UΔI*->U*I*'
```

If a group has more than one measuring channel, you can get additional information about the group:

• In many cases the instantaneous values of all used measuring channels are calculated together. By this you can see for example the not measured voltages and currents in wiring '2+2 Channels' (aron circuit).

This virtual channel can be used like a standard channel (you get all values, scope, harmonics, flicker, ...)

This kind of channels we call 'linked channels'

• The total values of a group are calculated (total active power, total power factor, total energy, ...).

This kind of channels we call 'sum channels'.

Following you find an overview over the different wirings, the groups, the measured values and where you can find the values in the display. The definition of the header can be found in chapter 5.4, 'Display of values'.

Wiring '4+0 Channels'

Display	Group	Meaning	Header
channel			
1	A	The values measured with the first measuring channel	Chn1 A:1
2	A	The values measured with the second measuring channel	Chn2 A:2
3	A	The values measured with the third measuring channel	Chn3 A:3
4	A	The values measured with the fourth measuring channel	Chn4 A:4
13	A	The total values (sum channel) of group A (display	Sum(1-4) A:13
		channel 1 to 4)	

For typical measuring circuit see 3.3.1, 'Measuring circuit for typical line applications using the internal current path'.

Wiring '3+1 Channels'

Display	Group	Meaning	Header
channel			
1	A	The values measured with the first measuring channel	Chn1 A:1
2	A	The values measured with the second measuring channel	Chn2 A:2
3	A	The values measured with the third measuring channel	Chn3 A:3
4	В	The values measured with the fourth measuring channel	Chn4 B:4
13	A	The total values (sum channel) of group A (display channel 1 to 3)	Sum(1-3) A:13

For typical measuring circuit see 3.3.2, 'Measuring circuit for measuring efficiency of 3/1phase systems'.

Wiring '2+2 Channels'

Display	Group	Meaning	Header with Aron
channel			set to off
1	A	The values measured with the first measuring	Chn1 A:1
		channel	
2	A	The values measured with the second measuring	Chn2 A:2
		channel	
3	В	The values measured with the third measuring	Chn3 B:3
		channel	

Display	Group	Meaning	Header with Aron
channel			set to off
4	В	The values measured with the fourth measuring	Chn4 B:4
		channel	
5	A	The calculated (not measured) current I ₃ and voltage	Link12 (U3,I3) A:5
		U ₁₂ of group A (linked channel)	
6	В	The calculated (not measured) current I ₃ and voltage	Link34 (U3,I3) B:6
		U ₁₂ of group B (linked channel)	
13	A	The total values (sum channel) of group A (display	Sum(1-2) A:13
		channel 1 to 2)	
14	В	The total values (sum channel) of group B (display	Sum(3-4) B:14
		channel 3 to 4)	

For typical measuring circuit see 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems' if you replace 'L2' by 'N'.

Wiring '2+2 Channels'

Display	Group	Meaning	Header with Aron set
channel			to on
1	A	The values measured with the first measuring	Chn1 (U12,I1) A:1
		channel	
2	A	The values measured with the second measuring	Chn2 (U32,I3) A:2
		channel	
3	В	The values measured with the third measuring	Chn3 (U12,I1) B:3
		channel	
4	В	The values measured with the fourth measuring	Chn4 (U32,I3) B:4
		channel	
5	A	The calculated (not measured) current I ₂ and	Link12 (U31,I2) A:5
		voltage U ₃₁ of group A (linked channel)	
6	В	The calculated (not measured) current I ₂ and	Link34 (U31,I2) B:6
		voltage U ₃₁ of group B (linked channel)	
13	A	The total values (sum channel) of group A (display	Sum(1-2) A:13
		channel 1 to 2)	
14	В	The total values (sum channel) of group B (display	Sum(3-4) B:14
		channel 3 to 4)	

For typical measuring circuit see 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems'.

For further information about this tables see also chapter 5.3, 'Definition of measuring values'.

So a general rule what you see is:

All measuring channels

All channels calculated from sample values (linked channels)

All channels calculating the total values of a group (sum channels)

2.5 Linked values, star to delta conversion (option L45-O6)

If you have installed the option star to delta conversion you can calculate values, which you can't measure directly (for example if you have a load in delta circuit, and want to know, how big is the power in each load, you could use the wiring '3+1, $U\Delta I^*$ -> $U\Delta I\Delta$ '. Then you would measure the current in the three phases and the voltages between the phases. As linked values you get the voltage, current, power and all other values of each load, refer the following figure).

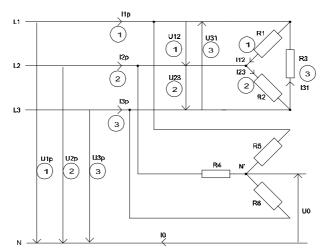


Figure 2: Allocations of the different linked values

Important note!

You can only perform a star to delta conversion, if this is physically possible. For the calculation we assume following conditions:

- u1+u2+u3=0
- u12+u23+u31=0
- i1+i2+i3=0
- i12+i23+i31=0

This assumption may not be met in following examples:

- You have a load in star circuit and there is a current flow out of the midpoint. So you can't transform this circuit to a equivalent delta circuit, because this would only have 3 wires instead of 4! This can be a typical problem when using frequency converters: Due to the high clock frequencies there might be a capacitive earth current which is the fourth "wire".
- You have a circuit in a delta configuration. If there are additional sources in one or all of the three 'loads' (e.g. by induction), there can flow a current inside the delta circuit.

Following you find an overview over the different wirings, the groups, the measured values and where you can find the values in the display. After the grouping of the wiring you see how the signals are connected to instrument and what values are calculated.

Wiring '3+1, U*I*->U∆I∆'

Display	Group	Meaning	Header
channel			
1	A	The values in star circuit measured with the first	Chn1 (U1,I1) A:1
		measuring channel (U ₁ , I ₁)	
2	A	The values in star circuit measured with the	Chn2 (U2,I2) A:2
		second measuring channel (U ₂ , I ₂)	
3	A	The values in star circuit measured with the	Chn3 (U3,I3) A:3
		third measuring channel (U ₃ , I ₃)	
4	В	The values measured with the fourth measuring	Chn4 B:4
		channel	
5	A	The values in delta circuit, calculated from	Link123 (U12,I12) A:5
		display channel 1 to 3 (U ₁₂ , I ₁₂)	
6	A	The values in delta circuit, calculated from	Link123 (U23,I23) A:6
		display channel 1 to 3 (U ₂₃ , I ₂₃)	
7	A	The values in delta circuit, calculated from	Link123 (U31,I31) A:7
		display channel 1 to 3 (U ₃₁ , I ₃₁)	
13	A	The total values (sum channel) of group A	Sum(5-7) A:13
		(display channel 5 to 7)	

For typical measuring circuit see 3.3.2, 'Measuring circuit for measuring efficiency of 3/1phase systems'.

Wiring '3+1, U∆I*->U∆I∆'

Display	Group	Meaning	Header
channel			
1	A	The values measured with the first measuring	Chn1 (U12,I1) A:1
		channel (U ₁₂ , I ₁)	
2	A	The values measured with the second measuring	Chn2 (U23,I2) A:2
		channel (U ₂₃ , I ₂)	
3	A	The values measured with the third measuring	Chn3 (U31,I3) A:3
		channel (U ₃₁ , I ₃)	
4	В	The values measured with the fourth measuring	Chn4 B:4
		channel	
5	A	The values in delta circuit, calculated from	Link123 (U12,I12) A:5
		display channel 1 to 3 (U ₁₂ , I ₁₂)	

Display	Group	Meaning	Header
channel			
6	A	The values in delta circuit, calculated from	Link123 (U23,I23) A:6
		display channel 1 to 3 (U ₂₃ , I ₂₃)	
7	A	The values in delta circuit, calculated from	Link123 (U31,I31) A:7
		display channel 1 to 3 (U ₃₁ , I ₃₁)	
13	A	The total values (sum channel) of group A	Sum(5-7) A:13
		(display channel 5 to 7)	

For typical measuring circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L45-O6)'.

Wiring '3+1, U∆I*->U*I*'

Display	Group	Meaning	Header
channel			
1	A The values measured with the first measuring		Chn1 (U12,I1) A:1
		channel (U_{12}, I_1)	
2	A	The values measured with the second measuring	Chn2 (U23,I2) A:2
		channel (U_{23}, I_2)	
3	A	The values measured with the third measuring	Chn3 (U31,I3) A:3
		channel (U_{31}, I_3)	
4	B The values measured with the fourth measuring		Chn4 B:4
		channel	
5	A The values in star circuit, calculated from display		Link123 (U1,I1) A:5
		channel 1 to 3 (U_1, I_1)	
6	6 A The values in star circuit, calculated from displa		Link123 (U2,I2) A:6
		channel 1 to 3 (U_2, I_2)	
7	A The values in star circuit, calculated from display Link1		Link123 (U3,I3) A:7
		channel 1 to 3 (U_3, I_3)	
13	A The total values (sum channel) of group A Sum(5-7)		Sum(5-7) A:13
		(display channel 5 to 7)	

For typical measuring circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L45-O6)'.

Wiring '2+2, $U\Delta I^*->U\Delta I\Delta$ '

Display	Group	Meaning	Header	
channel				
1	A	The values measured with the first measuring	Chn1 (U12,I1) A:1	
		channel (U_{12}, I_1)		
2	A	The values measured with the second measuring	Chn2 (U32,I3) A:2	
		channel (U ₃₂ , I ₃)		

Display	Group	Meaning Header		
channel				
3	В	The values measured with the third measuring	Chn3 (U12,I1) B:3	
		channel (U ₁₂ ', I ₁ ')		
4	В	The values measured with the fourth measuring	Chn4 (U32,I3) B:4	
		channel (U ₃₂ ', I ₃ ')		
5	A	The calculated (not measured) current I ₂ and	Link12 (U31,I2) A:5	
		voltage U ₃₁ of group A (linked channel)		
6	В	The calculated (not measured) current I ₂ ' and	Link34 (U31,I2) B:6	
		voltage U ₃₁ ' of group B (linked channel)		
7	A	The values in delta circuit, calculated from display	Link12 (U12,I12) A:7	
		channel 1 to 2 (U_{12} , I_{12})		
8	A The values in delta circuit, calculated from display channel 1 to 2 (U ₂₃ , I ₂₃)		Link12 (U23,I23) A:8	
9	A The values in delta circuit, calculated from display		Link12 (U31,I31) A:9	
		channel 1 to 2 (U_{31} , I_{31})		
10	B The values in delta circuit, calculated from display		Link34 (U12,I12) B:10	
		channel 3 to 4 (U_{12}', I_{12}')		
11	11 B The values in delta circuit, calculated from dis		Link34 (U23,I23) B:11	
		channel 3 to 4 (U ₂₃ ', I ₂₃ ')		
12	12 B The values in delta circuit, calculated from display Li		Link34 (U31,I31) B:12	
		channel 3 to 4 (U_{31}', I_{31}')		
13	3 A The total values (sum channel) of group A Sum		Sum(7-9) A:13	
		(display channel 7 to 9)		
14	B The total values (sum channel) of group B Sum(10-12)		Sum(10-12) B:14	
		(display channel 10 to 12)		

For typical measuring circuit see 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems'.

Wiring '2+2, U∆I*->U*I*'

Display	Group	Meaning	Header
channel			
1	A	The values measured with the first measuring	Chn1 (U12,I1) A:1
		channel (U_{12}, I_1)	
2	A	The values measured with the second measuring	Chn2 (U32,I3) A:2
		channel (U ₃₂ , I ₃)	
3	В	The values measured with the third measuring	Chn3 (U12,I1) B:3
		channel (U ₁₂ ', I ₁ ')	
4	В	The values measured with the fourth measuring	Chn4 (U32,I3) B:4
		channel (U ₃₂ ', I ₃ ')	

Display	Group	Meaning	Header
channel			
5	A	The calculated (not measured) current I ₂ and	Link12 (U31,I2) A:5
		voltage U ₃₁ of group A (linked channel)	
6	В	The calculated (not measured) current I ₂ ' and	Link34 (U31,I2) B:6
	voltage U ₃₁ ' of group B (linked channel)		
7	A	The values in star circuit, calculated from display	Link12 (U1,I1) A:7
		channel 1 to $2(U_1, I_1)$	
8	A	The values in star circuit, calculated from display	Link12 (U2,I2) A:8
		channel 1 to 2 (U ₂ , I ₂)	
9	A The values in star circuit, calculated from display		Link12 (U3,I3) A:9
		channel 1 to 2 (U ₃ , I ₃)	
10	B The values in star circuit, calculated from display		Link34 (U1,I1) B:10
		channel 3 to 4 (U_1 ', I_1 ')	
11	B The values in star circuit, calculated from display		Link34 (U2,I2) B:11
		channel 3 to 4 (U ₂ ', I ₂ ')	
12	B The values in star circuit, calculated from display		Link34 (U3,I3) B:12
		channel 3 to 4 (U ₃ ', I ₃ ')	
13	A The total values (sum channel) of group A (display		Sum(7-9) A:13
		channel 7 to 9)	
14	В	The total values (sum channel) of group B (display Sum(10-12)	
		channel 10 to 12)	

For typical measuring circuit see 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems'.

For further information about this tables see also chapter 5.3, 'Definition of measuring values'.

3 Installation

3.1 Unpacking and putting into operation

Having unpacked the equipment, it should be checked for signs of damage. Damage due to transportation should be reported to the equipment supplier at the earliest opportunity. If it is uncertain to use the damaged equipment safely, then the equipment should not be used.

The package should be stored for further transports (e.g. for the annual calibration according to ISO9000).

After delivery the following items should be present:

- 1 LMG450 4 channel measuring instrument
- 1 User manual
- Safety laboratory leads, 2.5mm², 1m, 8 in violet, 8 in grey
- 1 Mains supply cable

Further accessories as listed in the delivery note.

The instrument should only be used in a clean and dry environment and must never be operated in excessively dusty or moist spaces. To ascertain sufficient air circulation the instrument should be operated in a horizontal position or tilted only to the degree possible by of the adjustable handle. The instrument should not operate in direct sunlight.

3.2 General set-up

In general the instrument stores the actual settings as well as the last used menu. Pressing the both lower softkeys when switching on the instrument will reset all settings to the default parameters.

By this you can delete faulty scripts, which could block the instrument.

3.3 Connections of the LMG450

First of all please refer to chapter 1.1, 'Safety Instructions'.

To ensure correct power measurement polarity, connect the cabling to the test circuit so that the grey terminals (U and I) are used as a reference. In other words, the signal source should point towards the terminals U^* and I^* .

When working with DC voltages/currents, note that the terminals marked with the '*' are the positive connections.

Installation LMG450

The following diagrams are some examples for typical connections of the LMG450. But all other measuring circuits are also possible (e.g. circuits which measure the correct current instead of the correct voltage).

3.3.1 Measuring circuit for typical line applications using the internal current path

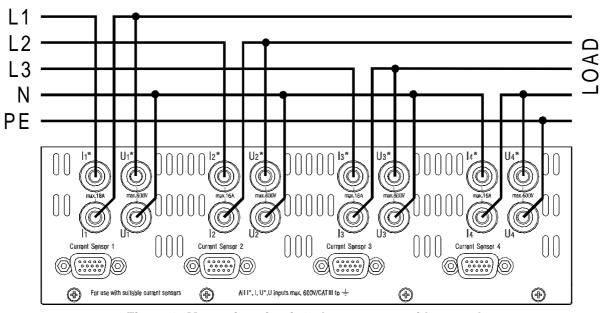


Figure 3: Measuring circuit 3 phase system with neutral

In this circuit we measure with the first three channels the voltage, current and power of the three phase system. With the fourth channel we measure additionally the current in the neutral wire and the voltage between neutral and earth. Of course you can use the same circuit without the fourth channel, if you are not interested in this values.

This circuit should be measured with wiring '3+1 Channels'.

Wiring '4+0 Channels' is also possible, but then the measured power of channel 4 would be added to the total power of the system (this could be correct, but depends very much on what you want to measure!).

3.3.2 Measuring circuit for measuring efficiency of 3/1phase systems

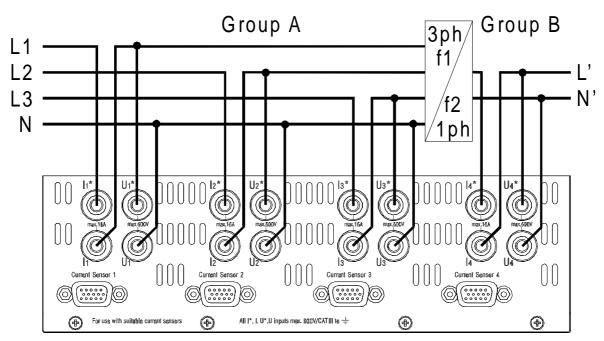


Figure 4: Measuring circuit for measuring efficiency (3/1phase)

With group A you measure the three phase power, with group B the one phase power of the system. The frequencies of group A and B can be different.

You can use this circuit also in the other direction, when you have a one phase source and a 3 phase load (e.g. solar panel pushing energy to the mains).

This circuit should be measured with wiring '3+1 Channels'. If your 3phase load is an delta circuit and you have the option L45-O6 (star to delta conversion) implemented, you can also use the wiring '3+1, $U*I*->U\Delta I\Delta$ ' to determine all the values of the delta circuit.

Installation LMG450

3.3.3 Measuring circuit (typical) for star to delta conversion (option L45-O6)

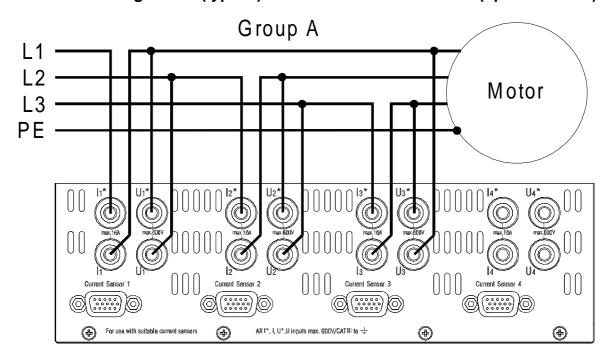


Figure 5: Star to delta conversion

With group A you measure the linked voltages and the currents in the phases. The LMG450 calculates with this both values a power for each channel, but this power will not be the power of the system, because the measured voltages (U_{12} , U_{23} and U_{31}) belong not to the currents (I_1 , I_2 and I_3). The power values are a mix from star and delta values.

But with the star to delta conversion, you can either transform the voltages to star voltages or you can transform the currents to delta currents. This will depend on your load. Now you have voltage and current in the same circuit and now you have also power values which exist in your circuit.

However the group B can be used independently like in the above examples.

This circuit should be measured with wiring '3+1, $U\Delta I^*->U\Delta I\Delta$ ' or '3+1, $U\Delta I^*->U^*I^*$ '.

3.3.4 Aron wiring

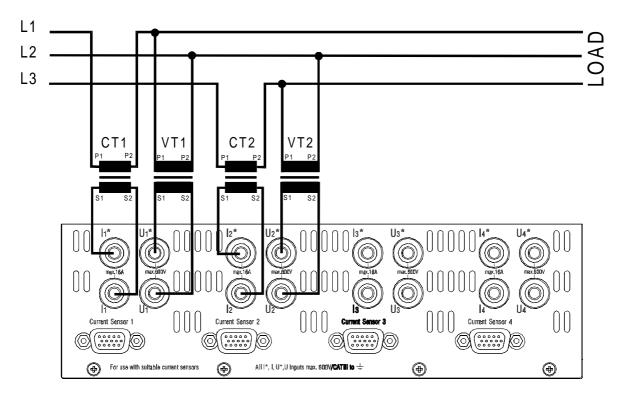


Figure 6: Measuring circuit with current and voltage transformers in Aron wiring

This wiring is for measuring the power of a three phase system without a neutral conductor. This circuit should be measured with wiring '2+2 Channels'. Here current and voltage are measured with transformers to enlarge the ranges, e. g. for measuring in middle or high voltage systems with also high currents. The both free channels could be used to measure another three phase system: refer "3.3.5 Measuring circuit for measuring efficiency of 3/3phase systems".

Installation LMG450

3.3.5 Measuring circuit for measuring efficiency of 3/3phase systems

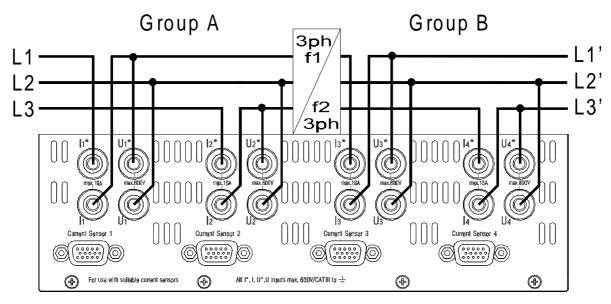


Figure 7: Measuring circuit for measuring efficiency (3/3phase)

With group A you measure the first three phase power, with group B the second one. The frequencies of group A and B can be different. This is a double aron circuit.

This circuit should be measured with wiring '2+2 Channels'. If you have the option L45-O6 (star to delta conversion) implemented, you can also use the wiring '2+2, $U\Delta I^*->U\Delta I\Delta$ ' (for a delta circuit load) or '2+2, $U\Delta I^*->U^*I^*$ ' (for a star circuit load) to determine all the values of the load

3.3.6 Measuring circuit using an external current sensor

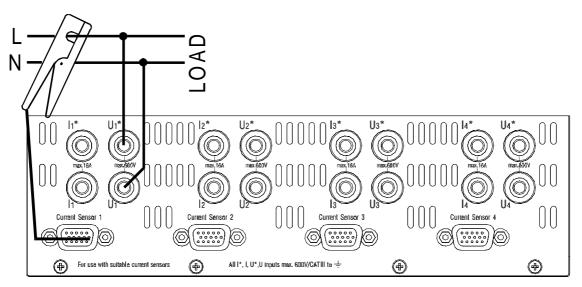


Figure 8: Measuring circuit with external current sensor

Here you see, how to install your current sensor.

For easy usage all ZES sensors have an EEPROM implemented in which we have stored the name, scaling, ranges, adjustment and delay time. The LMG450 recognises automatically, which ZES sensor is connected and sets up the range menu. Further on we correct some of the errors the sensor produces (transfer error, delay time). So you get the best measuring results with each sensor.

Most sensors are supplied by the instrument. But some have an additional 9 pin SUB-D connector for an external supply (for example PSU-S6). This has also to be connected.

In this monophase application you could use every wiring.

3.3.7 Measurement of high currents

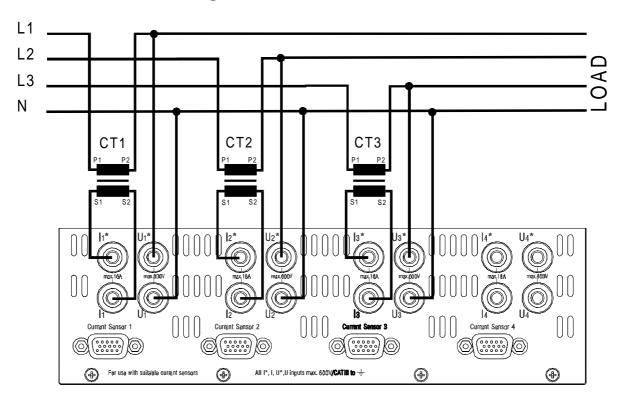


Figure 9: Measuring circuit for measuring high currents with transformers, voltage directly

In this figure you see how to measure a 3/4 phase system with high currents. The current path is connected via transformers to enlarge the ranges of the LMG450. For this measurement you should use the wiring '3+1 Channels'.

Installation LMG450

3.3.8 Measurements at middle and high voltage systems

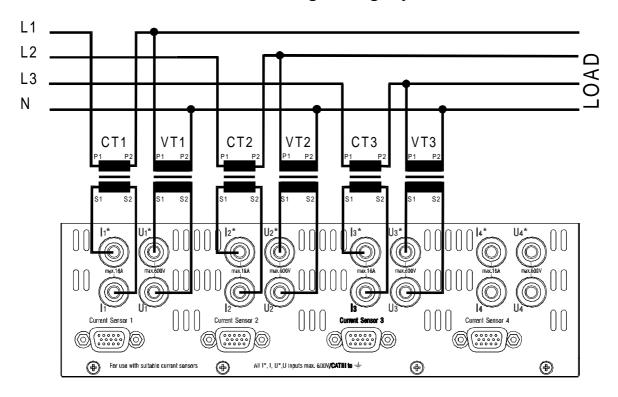


Figure 10: Measuring circuit for measuring in middle and high voltage systems

This is the measuring circuit for measuring in middle and high voltage systems. You can see that there is no PE conductor. For very high currents and voltages, there are transformers in each path implemented. The chosen wiring should be '3+1 Channels'.

CT1 VT1 P1 P2 P2 P1 P2 P

3.3.9 Measurements at middle and high voltage systems without N

Figure 11: Measuring circuit for measuring in middle and high voltage sytems without N
Using artificial midpoint

This is the measuring circuit for measuring in middle and high voltage systems without the neutral N. You can see that there is no PE conductor. You just need each two transformers for voltages and currents. The chosen wiring should be '3+1 Channels'.

Installation LMG450

3.3.10 Measurements at middle and high voltage systems without N

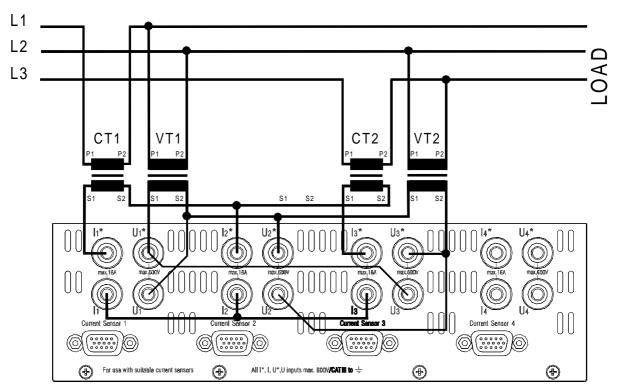


Figure 12: Measuring circuit for measuring in middle and high voltage sytems without N
Using star to delta conversion

This is the measuring circuit for measuring in middle and high voltage systems without the neutral N. You can see that there is no PE conductor. You just need each two transformers for voltages and currents. The chosen wiring should be '3+1, $U\Delta I^*$ -> $U\Delta I\Delta$ ' or '3+1, $U\Delta I^*$ -> U^*I^* '.

4.1 Front panel

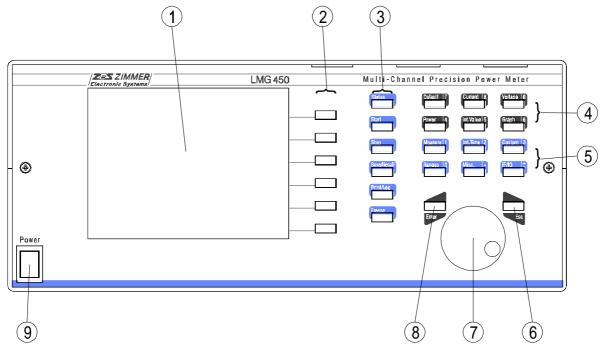


Figure 13: Front panel of the instrument

1. Graphical Display

2. Softkeys

Their function depends on the indicated function in the display.

3. Special function keys

Status: Here you get status information about the LMG450

Start: This key is used to start time dependent measurements

Stop: This key is used to stop time dependent measurements

Save/Recall: The actual menu is stored to the memory card

Print/Log: The actual menu is send to the printer output or logger

Freeze: Holds the measuring values of the last cycle in the display or

enables the refresh of the display after each cycle

4. Dark menu selection keys

With this keys you can call different menus with the pure measuring values:

Default, Current, Voltage, Power, Int. Value and Graph.

A second function of this keys is to enter the digits from '4' to '9' when in a number entering mode.

5. Violet menu selection keys

With this keys you can call several menus for setting up the instrument:

Measure: The main measuring parameters

Int. Time: The parameters for time dependent measuring

Custom: The set-up of the custom defined menus

Ranges: The range selection of the measuring channels

Misc.: Setup of date, time and display brightness.

IF/IO: Setup of options

A second function of this keys is to enter the digits from '0' to '3' and '.' and '-' when in a number entering mode.

6. ESC key

This key is used cancel an entering mode and to quit an error message.

7. Rotary knob

This knob is used for several number settings, for selections in lists and for cursor moving. A turn to the right increases the number. In many cases you can also push the knob to confirm a selection.

8. ENTER key

This key is used to finish an entering and to quit an error message

9. Mains switch

4.2 Rear panel

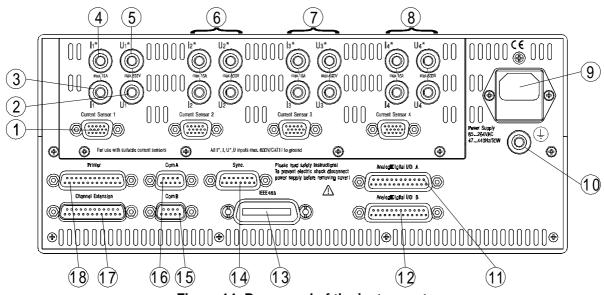


Figure 14: Rear panel of the instrument

First measuring channel:

1. External current sensor input

Input for voltages from external isolating transformers or sensors. 15-pin HD socket

2. U

Voltage input (low), 4mm grey safety socket

3. I

Current input (low), 4mm grey safety socket

4.

Current input (high), 4mm violet safety socket

5.

Voltage input (high), 4mm violet safety socket

- 6. Second measuring channel with same sockets like first channel
- 7. Third measuring channel with same sockets like first channel
- 8. Fourth measuring channel with same sockets like first channel

9. Mains

Fused chassis plug with holder for fuses. Mains voltage 85...264V, 47...440Hz, about 45W, 2 fuses T1A/250V, 5x20mm, IEC127-2/3

10.PE

Connector for additional earthing, 4mm green/yellow safety socket

11. First analogue I/O card

Additional analogue and digital inputs and outputs for auxiliary signals.

12.Second analogue I/O card

Additional analogue and digital inputs and outputs for auxiliary signals.

13.IEEE488

Parallel interface, 24-pin micro-ribbon socket

14.Sync.

Socket for external synchronisation and measuring time control of the LMG450. 15-pin SUB-D socket

15.ComB: Serial RS232 interface

This is a serial interface which is reserved for further usage 9-pin SUB-D jack

16.ComA: Serial RS232 interface

This is the standard serial interface for remote control of the LMG450.

This interface is also used for software updates and service purposes.

9-pin SUB-D socket

17. Channel extension

Here you can later on connect additional measuring channels.

18.Printer

Centronics compatible interface or printer connection 25-pin SUB-D socket

4.3 Display

The display is divided into 3 sections:

- The softkeys at the right border change their meaning depending on the actual menu. A softkey with a black background is an active softkey. A dotted softkey can not be used.
- The elements of the status line at the top of the display are described in '4.3.1 Status line'. In this line you can see the most important status information of the instrument. This line is always visible.
- In the main display the different menues are displayed. This can be measuring values, set up menues or graphs.

At the bottom of this region a possible error message is displayed. This error messages have to be quit by pressing *Enter* or *Esc*.

4.3.1 Status line

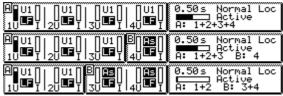


Figure 15: Status lines with 3 different wirings

The status line has the following sub sections (from left to right):

• The voltage and current signal level indicators. Here you can see how much of the actual voltage/current range has been used. This display is important for the selection of the measuring range. Between the two bars you can find two information: The upper one is the synchronisation source of the channel. Here you can find:

Un for the voltage channel n

In for the current channel n

XT for extended Trigger

Li for line synchronisation

Ex for external synchronisation

As (inverse) for asynchronous (no synchronisation)

The lower information can be:

'LF' (inverse displayed) indicating that the signal of the channel is low pass filtered.

The implemented 'A' and 'B' indicator show you, to which group the channels belong to.

- The time base indicator shows the actual chosen cycle time. The bar below this number shows how much of the cycle time is over.
- The mode indicator. In this line you see the chosen measuring mode. Possible values are 'Normal', 'prCE', 'CE-Flk', 'HRM100' and 'Trans'.
 In the line below 'Active' indicates, that the display is updated with measuring values.
 'Freeze' indicated a frozen display. The current displayed values don't change until 'Active' is chosen again (key *Freeze*).
- The remote indicator. 'Rem' indicates that the instrument is remote controlled by a PC. Some setting can now only be done by the PC but not at the front panel. 'Loc' indicates, that the instrument works as a stand alone instrument.
- In the last line you see the current chosen wiring.

4.4 General menues

If you are in a sub menu of a menu, you can reach the main menu by pressing the correct softkey, until you are in the main menu or you can press the menu button (e.g. *IF/IO*) again.

Here you find the description of menues which are equal for all measuring modes.

4.4.1 Misc.

Globals tab

Here you can do 4 settings:

Date Here you can enter the actual date. This date is used inside the instrument.

Time Here you can enter the actual time. This time is used inside the instrument. Instead of the ':' you have to enter a '.'.

Contr Here you can setup the contrast of the display.

Color Here you can set-up the colours of the display.

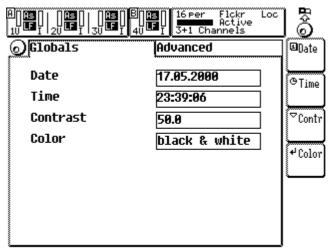


Figure 16: Misc. menu

Advanced tab

Here you can set-up some advanced, special things which should not be used under usual conditions. Just users which are sure to know what they do should change values in this menu. With wrong settings measuring results might be wrong! Following things can be set-up:

Zero The zero point rejection (see 13.2, 'Display of values') can be switched off. It will be activated again each time you restart the instrument.

Phan. Vals. The rejection of phantom values can be deactivated. Phantom values appear for example at wiring '3+1, $U\Delta I^*->U\Delta I\Delta$ ', because the measured star current has physically nothing to do with the measured triangle voltage. But the power measuring channel sees both signals at the same time and calculates a power for them, the phantom power.

Z-Adj. allows you to adjust the zero point of the instrument. You can only adjust the actual selected voltage and current jacks.

You can reset the instrument to the factory settings of calibration by holding the lower two softkeys pressed while switching on the instrument (for about 10s, until the instrument beeps).

Be careful with this function because you can also deadjust the instrument!!!

For the exact adjustment steps please refer to 12.3.2 'Adjustment

The adjustment has to be done at $(23\pm1)^{\circ}$ C.

ZES ZIMMER offers in principle a way to adjust the instruments outside our factory, if some technical preconditions are fulfilled. For further information, please contact sales@zes.com

Zero adjustment of the instrument'.

4.4.2 IF/IO

In this menu you can set-up all features which are available as instrument options. Further on you see the actual software version and the installed options. With **List** you can choose a short list or detail list. In the last one you can scroll with the rotary knob.

4.4.2.1 Interfaces for remote control

With exception of the IEEE interface all interfaces could also be used for data logging (see 11, 'Logging of values to drives, printer and interfaces'. To remote control the LMG you first have to set-up the wished interface for this job.

Press several times *IF/IO* to reach the *IF/IO* menu. By pressing **IF** you can set-up the remote device. You have several available 'profiles' from which you can select one (with **Dev.**). These profiles are predefined but they can be modified when necessary (with **Set**).

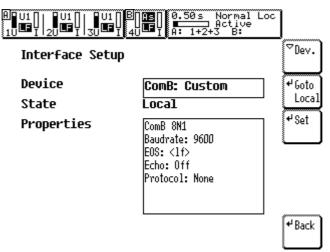


Figure 17: Interface Setup

If you modify the remote control profile for ComA the data logging profile for ComA is not changed!

If you want to reserve an interface for logging, it can happen that this interface is already used for logging. In this case you are asked, if you want to reassign it for logging. Press *Enter* to do this or *Esc* to cancel.

4.4.2.1.1 Remote control profiles

The actual setting of a profile are displayed under properties. You can change them by pressing **Set**.

Following profiles are available. You get just these displayed which are physically present:

ComA: Terminal

Choose this profile if you are not familiar with the remote possibilities of the LMG and you want to try to enter some commands manually via a terminal program. You can just change the baud rate. The other parameters are set up to values (EOS=Terminal, Echo=off,

Protocol=None) so that you can work with most terminal programs directly. The default value for the baud rate is 9600 baud.

ComA: Script

Instead of entering a script via the rotary knob you can also transfer it via the serial interface. If you want to do this, you can get a freeware program from ZES. This profile is predefined to communicate with this program. You just have to set-up the profile, connect LMG and PC with a 1:1 cable and start the software.

With this software you can create, read out, modify, write and save a script.

ComA: OEM Appl

This should be chosen for external software like SYS61K, TERM-L5 or other software from ZES (if no other specification in the software exists). Most parameters are fixed (EOS=<lf>, Echo=off, Protocol=RTS/CTS) and you can just modify the baudrate. Default value is 38400 baud.

ComA: Custom

If you want to implement the LMG into your own system, you can set-up in this profile all parameters:

Baudrate The serial interface supports baud rates from 1200 (maximum about 100 characters per second) up to 115200 baud (10000 characters per second). Usually you use the biggest value. Some old PC support just up to 38400 baud.

EOS End-Of-String character(s). This are the characters which mark the end of a command or answer. Possible values are '<lf>', '<cr>, <cr><lf>' and 'Terminal'. In 'Terminal' mode each '<cr>' of the computer is answered by a '<cr><lf>' of the LMG450. By this you get a nice display if you use an terminal program (if you have also activated the echo).

Echo If this is set on, each character you send to the LMG is returned to the sender. By this you can check, if the cable is working and in a terminal program you see, what you have typed.

Protocol The LMG supports 'None' protocol and 'RTS/CTS'. The last one is a hardware handshake. It should be used, if the computer can't read all data in real time and it gets very many data.

ComB: Custom

Same like ComA. Please note that you have to use a null modem cable.

GPIB

If you want to use this interface you need a GPIB controller in your PC. You have just to setup the address of the LMG (in the range from 1 to 30).

4.4.2.1.2 remote <-> local

If you send any characters to the LMG it changes to the remote state (you see a 'REM' in the status line). Then it is impossible to change any parameters like cycle time, because this might conflict with an actual remote command.

To leave this remote state you can send an 'go-to-local' command via interface or you can press the **Goto Local** softkey.

If you send further characters to the instrument it changes back to the remote state.

4.4.2.2 Processing signal interface (option L45-O3)

With **IO** you reach the set-up menus for the processing signal interface. With the rotary knob you can select four tabs ('A_In', 'A_Out', 'D_In' and 'D_Out'). By pressing the rotary knob you can set-up each tab. **Back** returns to the *IF/IO* menu.

In the LMG450 you can install one ore two processing signal interface cards. So the number of channels which are displayed in each menu depends on the number of installed cards.

4.4.2.2.1 Analogue Input tab

If you are in the setting mode of this menu, you can with the rotary knob select a channel.

Zero Here you set-up, which value will be displayed with 0V input.

FS Here you set-up, which value will be displayed with 10V input.

Example: You select **Zero** '30' and **FS** '120'. Now you get with 0V input a display of 30, with 10V input a display of 120 and with 5V input a display of 75. The output is updated every measuring cycle.

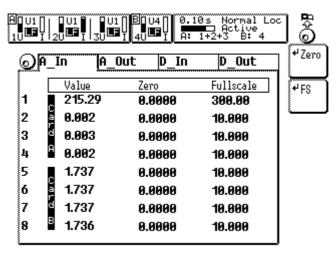


Figure 18: Analogue inputs

Pressing the rotary knob returns you to the tab selection.

4.4.2.2.2 Analogue Output tab

If you are in the setting mode of this menu, you can with the rotary knob select a channel.

Value This allows you to set-up the value which should be output. See chapter 4.5, 'Entering identifiers' for details.

Zero Here you set-up, which value of **Value** will result an output of 0V.

FS Here you set-up, which value of **Value** will result an output of 10V.

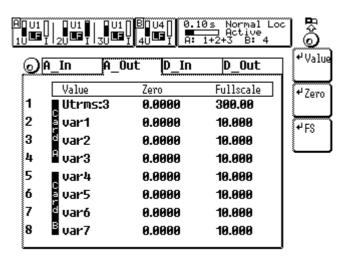


Figure 19: Analogue outputs

Example: You select **Value** 'Utrms', **Zero** '200' and **FS** '250'. Now you get with Utrms=200V an output of 0V, with Utrms=250V an output of 10V and with Utrms=230V an output of 6V. The output is updated every measuring cycle, because the values are calculated every measuring cycle.

Pressing the rotary knob returns you to the tab selection.

4.4.2.2.3 Digital Inputs tab

In this menu you get the actual state of the digital inputs. The inputs 1 to 4 of each card are only used for state indication. The inputs 5 and 6 can be used as state indicators or for frequency and direction input (determined by the phase shift between input 5 and 6). In the last case the input 5 is used to measure the frequency. This is multiplied with the 'Scale' value and displayed under 'Frequency'. A negative frequency value indicates a reverse rotation direction. To change the scaling press the rotary knob and **Scl.A** (or **Scl.B** for the card B).

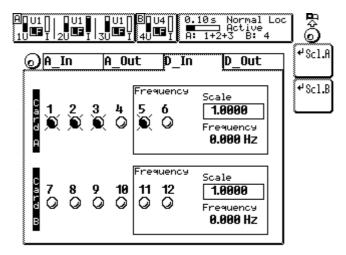


Figure 20: Digital inputs

Pressing the rotary knob returns you to the tab selection.

4.4.2.2.4 Digital Outputs tab

If you are in the setting mode of this menu, you can with the rotary knob select a channel.

Value This allows you to set-up the value which should be output. See chapter 4.5, 'Entering identifiers' for details.

Cond Here you set-up, under which condition the output is in the 'alarm state' (= high impedance of output, symbolised lamp is on!):

on: The output has always alarm state.

off: The output has never alarm state.

>=: The output has alarm state if the **Value** is bigger or equal to the **Limit**.

<: The output has alarm state if the **Value** is smaller than the **Limit**.

Limit Here you set-up, which limit is compared to the **Value**.

Example: You select 'Utrms:1 < 200V'. Now you get an alarm for every voltage smaller than 200V. The output becomes a high impedance state because a 'fail save' function is assumed.

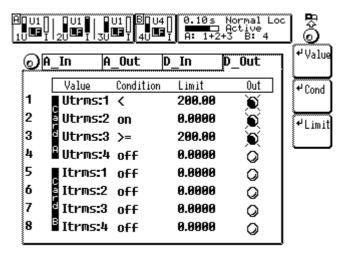


Figure 21: Limit menu

Pressing the rotary knob returns you to the tab selection.

Fail Save Principle

The fail save principle should offer you highest safety in critical applications. The principle is, that a high impedance state is the alarm (active) state. By this also broken or not connected wires as well as not switched on instruments are recognized as fail. Only the low impedance state is recognized as no alarm (deactive).

4.4.2.3 Options key

If you press on the softkey with the key symbol you get an actual software key which represents all installed options in your instrument. Some options of the instrument are software options which can be released by another key. If you for example want to install the 100 Harmonics you send us or your local sales company an order about this option together with your Current Option Key and with your serial number (SN).

Then you get back a second key which you can enter after pressing the key symbol. If the second key is correct, the option is installed.

Note

If you can access the instrument via an interface, you can use LMG-CONTROL to read out and update the key. This is much easier than working with the front panel.

4.4.3 Custom menu

In the standard menus *Voltage*, *Current*, ... (see chapters below) we have defined some values to be displayed which should fit to most customers. For some special applications you can define in the *Custom* menu your own values and graphics which should be displayed. Further on you can define your own values by using the integrated script editor (see 4.4.4, 'Script/Formula editor').

When entering you get at least two tabs. To change between the tabs, you have to use the rotary knob. To get the softkeys inside a tab you have to press the rotary knob.

4.4.3.1 New menu tab

Here you first have to define the name of a new (user defined) tab with **Name**. Then you have to define the mask for the menu with **Form**. Depending on this mask you can define up to 50 values for a menu. If everything is finished you can create the new menu by pressing **Make new**. The new menu appears as a new tab which can be edit (see 4.4.3.3, 'User defined tab').

You can define up to 8 menus.

With **Load** you can recall a previously saved menu from memory card or floppy if installed. You have to select a filename from the list.

4.4.3.2 Vars tab

In the Vars tab you see all variables. By default they are named 'var0' to 'var11'. With **Reset** you can set them all to '0.0'. With **Edit** you enter the script editor. Here you can define new variables, formulas as well as small scripts to control your measuring. For a detailed description see 4.4.4, 'Script/Formula editor'.

4.4.3.3 User defined tab

Here you do the definitions, which values appear at which place. With the rotary knob you choose the position an press **Edit Item**. In the dialog you choose with **Typ** the kind of data do display:

empty The item will displayed blank. Choosing this is the same like pressing the **Del**

Item softkey.

Value When choosing this have to choose with **Prop** a measuring value which

should be displayed as value with unit, but without identifier. How to enter

the **Prop** value see 4.5, 'Entering identifiers, characters and text'.

Name+Value When choosing this have to choose with **Prop** a measuring value which

should be displayed as value with unit and with leading identifier. How to enter the **Prop** value see 4.5, 'Entering identifiers, characters and text'.

String When choosing this have to choose with **Prop** a text which should be displayed. How to enter the **Prop** value see 4.5, 'Entering identifiers,

characters and text'.

Graph Here you get a list of all possible graphs. In principle you can display copies

of graphs which you have already set-up in the *Graph* menu. 'Scp.A:1' selects the first waveform of the group A scope, 'Scp.B:3' the third

waveform of group B scope. The 'Plot:x' is for selecting one of the four plot

functions.

To modify the graphical display you have to change to the *Graph* menu.

With **Font** you can choose another than the predefined font for the display.

With **Copy menu** you create a copy of the complete tab which can then be modified. With **Del menu** you can remove the complete tab. In a pop up menu you have to confirm this a second time.

To give a menu another name, please use **Edit Name**.

With **Save** you can store the menu to a memory card or floppy if installed. You have to select a filename from the list or enter a new one with **File name**.

4.4.4 Script/Formula editor

You reach the script/formula editor by pressing **Edit** in 'vars' tab in *Custom* menu.

With **Edit** you start entering the script. This is done like written in 4.5, 'Entering identifiers, characters and text'.

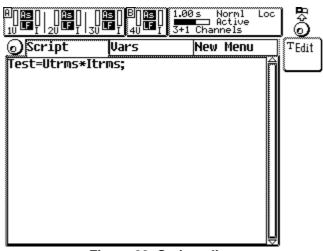


Figure 22: Script editor

With **Save** you can store the script to a memory card or floppy if installed. You have to select a filename from the list or enter a new one with **File name**.

With **Load** you can recall a previously saved script.

4.4.4.1 General

The script editor is similar like a simple programming language. The code is entered line by line. It is allowed to have several instructions in one line. Each instruction has to end with a ';'. Therefore an instruction can be written in more than one line. It is also allowed to have white spaces in the instruction as long as the keywords and identifiers are not divided by them. At the end of a line an automatic carriage return and linefeed are performed. A '#' indicates the begin of a comment. The comment lasts, until a return is detected (can be entered with **new line**). An automatic inserted newline will NOT end the comment!

The instruction

```
v0=Utrms*Itrms;
is identical to

v0 = Utrms* Itrms;
or

v0 =
Utrms * Itrms;
```

<- deletes the character left of the cursor. If the cursor is at the first position of a line, it jumps to the last position of the previous line.

You leave the script editor by pressing **End**. The program is now checked for correct syntax. Above the editor window you see then how many percent of the available memory space have been used.

The script (which includes the formulas) is executed when all values of a cycle have been calculated.

With **Reset** all variables are preset to 0.0 but the script is still valid. This is important if you use recursive formulas or conditions.

4.4.4.2 Grammar

4.4.4.2.1 Instructions

Instructions control the program flow while execution. If there are no conditioned instructions, the flow is in the same order like the listing. The results of an instruction can be used afterwards.

An instruction consists of one or more expressions. Each instruction (except if, else and fi) has to be finished with ';'. An instruction can be longer than one line. The result must not be assigned to a variable.

4.4.4.2.2 Condition instruction

Condition instructions choose between two alternative program flows. This is done by the expression following immediately to the word if.

```
if(expression) Instructions; fi
or
if(expression) Instructions; else Instructions; fi
```

The brackets for the expression are necessary. Then there could be one or more semicolon separated instructions which are executed if the expression was true. The end of the conditional execution is marked with fi, which is also necessary. The else part is optional.

Condition instructions can be nested, for example to realise a logical AND:

```
if(expression1)
   if(expression2)
       Instruction 1;
      :
      Instruction n;
   fi
fi
```

Example

```
if (Utrms>227.5)
   dout_off(1);
   dout_off(2);
else
   dout_on(4);
fi
```

If the voltage is bigger than 227.5V the digital outputs 1 and 2 are set to off. In the other case the output 4 is set to on.

4.4.4.2.3 Expressions

An expression is a sequence of operators, operands and functions. Expressions are in general recursive, which means they can be nested. But there is a practical limit in CPU power and memory which can cause the message "out of memory".

The order of evaluation of an expression depends on the priority of operands and on the brackets (see below).

4.4.4.2.4 Constants

Constants are always floating point. The valid range is $\pm 3.4E-34$ to $\pm 3.4E+34$. The number can be entered in usual or scientific notation. The decimal dot is only necessary for floating point numbers.

4.4.4.2.5 Variables

There is a distinction between read only variables and read write variables. The first ones are all measuring values of LMG450 but also values like cycle time and measuring ranges. This variables can be used for calculation like constants. The second one are the user defined variables.

So following is o.k.

v0=Utrms; but

Utrms=0; is not allowed.

A unit can be assigned to the variable. To assign the unit 'cm' to the variable 'a' write:

The result of expressions can only be stored in the user defined variables with the default identifiers 'var0' to 'var11'. This identifiers are valid until they are redefined in a script. The redefinition is simply be done by using a not existing identifier. This identifier replaces the first variable which was not changed until now. The maximum length of the new identifier is 10 characters. In 'Example 2' the identifier unigh replaces the identifier var0 and ulow replaces var1. As you can see the identifiers are replaced in the order of the occurrence. If you press End, all occurrences of var0 are replaced with unigh and so on. So you get in the user defined menu or the plot menu the new identifiers.

The read-only variables are identical to the identifiers in the menus (see 4.5, 'Entering identifiers'.

4.4.4.2.5.1 Local variables

A third kind of variables are local variables. They are also user defined, but are not displayed in the custom menu. A local variable starts always with a '\$' character:

\$test=Utrms*19.234;
b=Iac*\$test;
In this example \$test is not displayed, but only b.

4.4.4.2.5.2 Environment variables

These variables are accessible via the 'Env' ID as an array: Env[0...7].

They are (in opposite to standard variables) not displayed, but they can (in opposite to local variables) be used externally (e.g. in the processing signal interface). Further on they can be set directly by the interface (see 10.2.2.1.1, 'ENVironment ENV Env').

4.4.4.2.6 Keywords

These are strings which are no variables or constants but which are used for controlling the script editor:

The start of a conditioned program sequence. The condition have to follow in the round brackets.

The end of the program sequence which is used if the condition of the if was true (no semicolon at the end!). All command after the else until the next fi are used, if the condition of the if was **not** true. The else is optional.

The end of the program sequence which is used if the condition of the if was true (no semicolon at the end!).

4.4.4.2.7 Functions

abs(x)

dout_off(nr)

The following functions are implemented at the moment (x is the result of a valid expression, constant or function):

absolute value of x

acos(x)arcus cosine of x (result in radiant!) asin(x)arcus sine of x (result in radiant!) bell() generates a short sound with the internal speaker btst(x, bit_no) Returns true, if in variable x bit number bit no is set. The bits are counted from 1 to 32. You should only apply this function onto integer values like digital inputs or result of flicker measuring. Usually you should not use it with float numbers. cos(x) cosine of x (argument in radiant!) digin(mask) Returns the value of the digital inputs. The values are coded in one byte: input 1-4 correspond to bit 0-3 and input 7-10 to bit 4-7. So if the inputs 1 and 8 are active, the returned value would be 33. With mask you can define, which values are checked: With a mask of 32 only the input 8 is checked. In this case the return value can only be 32 or 0. The mask is useful when checking the status of one input, independent from the others. If you want to check all inputs, you should use a mask of 255!

Switches digital output number nr. off (into no-alarm state). 1≤nr≤4(8)

dout_on(nr) Switches digital output number nr on (into alarm state). 1≤nr≤4(8) freeze() freezes the display (like key Freeze) isrun() Returns 1, if the integration is running isstop() Returns 1, if the integration is stopped ln(x) log_e of x log(x) log_{10} of x print() Prints the menu in which you started the logging in 'by script' mode (see 11.3.1, 'Output intervals'). reset() Same like **Reset** Softkey in *Time Int*. menu scale_i(chn,x) Scale the current input, chn. is the number of the channel, x the scaling factor. scale_u(chn,x) Scale the voltage input, chn. is the number of the channel, x the scaling factor. sin(x)sine of x (argument in radiant!) sqrt(x) The square root of x start() Same like pressing Start stop() Same like pressing *Stop*

4.4.4.2.8 Operators

Operators are symbols which cause actions, when they meet variables, constants or formulas. The script editor offers following operators, sorted by priority:

reactivates the frozen display

high priority

unfreeze()

- : Channel separator, usually used only for multi channel devices (like analogue inputs). E.g. Ain: 3 is the third analogue input channel.
- [] Index operator, used for indexed values (arrays), e.g. u[5] is the 5th harmonic of the voltage
- () Function call, the value inside the brackets is the parameter to the function

- Negation
- Exponent
- / * Division and Multiplication
- + Addition and Subtraction
- <, ==, > smaller, equal, bigger (comparator operators)
- = Assignment of a value
- <> not equal

low priority

If there are no brackets, the operators are used in the order listed above.

The result of:

```
3^2*4 is 36
-(3^2)*-4 is also 36
```

4.4.4.2.9 Remarks

Each line starting with a '#' is a remark. See '4.4.4.2.14 ,Example 5:Switching digital outputs, depending on harmonics'. Only the first '#' is important, the other don't care.

4.4.4.2.10 Example 1: Freeze at limit violation

If the 23rd harmonic of voltage of channel 1 is bigger than 10V the display should be frozen and the instrument should inform you with a sound.

```
if(Uh:1[23] > 10)
    freeze();
    bell();
fi
```

Attention!

The function freeze() can cause the display to freeze at the start-up of the instrument. So be careful when using this function.

4.4.4.2.11 Example 2: Getting min/max values

You want to measure the biggest and smallest TRMS values of the voltage.

```
if (Uhigh==0)
    Ulow=RngU:1;
fi
if (Uhigh<Utrms:1)
    Uhigh=Utrms:1;
fi
if (Ulow>Utrms:1)
    Ulow=Utrms:1;
fi
```

The first if condition is used for resetting the minimum value: With **Reset** it would be set to 0 which is not sufficient, because this is already the smallest TRMS value. So if the maximum TRMS value is reset to 0.0, the minimum value is set to the range value which will not be reached under proper conditions. The second and third condition compute the maximum and minimum value and store them in the variables unigh and ulow which can be read out in the *Custom* menu.

4.4.4.2.12 Example 3: Calculating THD+N

You want to measure the total distortion factor including noise (THD+N) of the voltage of channel 2:

```
THDN=sqrt((Utrms:2^2-Uh:2[1]^2)/Uh:2[1]^2);
```

Please note that this will only work in the harmonic mode, because uh:2[1] is only calculated there!

4.4.4.2.13 Example 4: Counting pulses

You want to count the number of current pulses of a battery above 3A (the pulse width has to be bigger than twice the cycle time!)

```
ibat=abs(Idc:1);
if (ibat>3.0)
    if (r == 0)
        n=n+1;
        r=1;
    fi
fi
if (ibat < 3.0)
    r=0;
fi</pre>
```

4.4.4.2.14 Example 5:Switching digital outputs, depending on harmonics

```
### Wave1 ###
if(Ih:1[1]>0.08) dout_on(1);
else dout_off(1);
fi
### Wave3 ###
if(Ih:1[3]>0.068) dout_on(2);
else dout_off(2);
fi
### Wave5 ###
if(Ih:1[5]>0.05) dout_on(3);
else dout_off(3);
fi
```

The digital outputs 1 to 3 are switched on if the corresponding harmonic 1 to 5 is bigger than a defined value. In the other case the output is switched off.

4.4.4.2.15 Example 6: Calculation of the efficiency of a motor with torque and frequency input

For the measurement of the efficiency of a motor you can use the analogue and the frequency inputs. To input the torque of the motor use the analogue input (e.g. 1) and for the frequency use the digital frequency input (e.g. card1 Pin 12). For calculation of the efficiency you can use the following formula:

```
M=Ain:1;
n=DigFrq:1;
Pmech=M*n;
eta=Pmech/P:13*100;
```

Important Note: The motor frequency connected to the frequency input (No.1) has to be counted and scaled in Hz. Then you get a result in percent.

4.4.4.3 Printing scripts

You can printout the scripts you have set-up (see 11, 'Logging of values to drives, printer and interfaces'). Please note, that the complete script editor is printed out, not only the visible part.

4.4.4.4 Speed and torque calculation (option MotorTorque-SOFT)

This option provides two functions which calculate the values speed and torque from motor current and voltage. The motor must be a three phase asynchronous standard motors according IEC. There are just some information from type plate or catalogue data necessary. There is no need of a torque measuring shaft or a speed sensor. The motor can be connected to the lines or to a frequency converter.

Measuring error between no-load operation and 1.5 fold nominal torque typical below 2% of nominal torque resp. rotation speed for motors from 1kW to 100kW nominal power and rotation speed between -40% to +20% of nominal speed. The calculation is also possible with other nominal power, but with increased error.

For the calculation, following requirements must be met:

• Wiring 3+1, $U\Delta I^*->U^*I^*$

Filter

Smaller than half clock frequency. So just the fundamental must be measured, the clock ripple must be rejected.

• Signal coupling

AC

Sync

Such, that the fundamental frequency is displayed (e.g. I1, LP<300Hz)

The two functions are:

torque(Pn,fn,Un,In,pfn,pz,Rk,13,mk)

Calculates the torque in Nm. The

parameters are:

Pn: Nominal output power in W

fn: Nominal frequency in Hz

Un: Nominal line line voltage of the motor

in V

In: Nominal current in A

pfn: Nominal power factor

pz: Number of poles (twice the number of pole pairs)

Rk: Stator line-line copper resistance in Ω

mk No load torque correction

speed(Pn,nn,fn,Un,In,pfn,pz,Rk,13,mk)

Calculates the speed in min⁻¹. The

parameters are:

Pn: Nominal output power in W

nn: Nominal speed in min⁻¹

fn: Nominal frequency in Hz

Un: Nominal line line voltage of the motor

in V

In: Nominal current in A

pfn: Nominal power factor

pz: Number of poles (twice the number of

pole pairs)

Rk: Stator line-line copper resistance in Ω

mk No load torque correction

The copper resistance has to be measured at the same point, where the voltage is measured by the LMG. The advantage is, that you can measure for example from a cabinet and that the copper resistance of the wiring is included and by this eliminated from the calculation.

The results of torque() and speed() can be displayed in a user defined menu or transferred via an interface.

A typical script could look like this:

No load torque correction

Set mk=0, enter all other data and make a no load measurement of the motor. Use the read out torque with opposite sign as new value for mk. By this tolerances of the motor nominal values are corrected.

4.4.5 Saving and restoring configurations

You can save up to 8 different set-ups for the instrument. With **Reset** you get the factory settings. Everything is reset, but not the 8 stored configurations.

4.4.5.1 Loading a configuration

After pressing *Save/Recall* you can load previously saved configurations. For this purpose choose the wanted one with the rotary knob and press **Recll.** All set-up values like range settings, scripts and measuring settings are restored. The actual settings are lost.

In the field 'Active configuration mod()' you see now the name of the selected configuration. If mod(*) is displayed, any of the settings are changed.

4.4.5.2 Saving the configuration

After pressing *Save/Recall* you can save the actual configuration. For this purpose choose the wanted position with the rotary knob and press **Save.** Now you have to specify a name for this entry (see chapter 4.5, 'Entering identifiers, characters and text'). If the entry exists, it will be overwritten. All setup values like range settings, scripts and measuring settings are saved.

4.5 Entering identifiers, characters and text

In some menus (e.g. in the plot menu or in the menu for the digital outputs) you have to enter an identifier or text to specify which value should be worked with (e.g. plotted).

If the cursor is at the first position and you press \leftarrow , the complete input field will be deleted.

If you have pressed the softkey to modify the identifier or text, you can either enter the desired value by moving the rotary knob (**Mode** has to be set to copy!) to the wished letter and press

Enter or the rotary knob. In this case you have to enter the letters in the same way you see them in the menus (e.g. 'Utrms'). Or you can press the key of any valid menu (e.g. *Voltage*, *Current*, ...) and you get a list of the available values (in this mode).

Following values are available in the different menus:

Normal measuring mode

Default	Current	Voltage	Power	Int. Value	Measure	Custom	Misc.	IF/IO
f	f	f	f	q	Aver	Env	abs()	Ain
Iac	Iac	OvrU	P	EP	DisCyc	var0-11	acos()	DigFrq
Icf	Icf	Uac	PF	EQ	Cycle		asin()	Zero
Idc	Idc	Ucf	PHI	Et	Mtime		bell()	
Iden	Iden	Udc	Q	ES	Rcyc		cos()	
Idep	Idep	Uden	Rser	tsec			digin()	
Itrms	Itrms	Udcp	S	Pm			dout_on()	
Iff	Iff	Utrms	Xser	Qm			dout_off()	
Iinr	Iinr	Uff	Z	Sm			freeze()	
Iphi	Iphi	Uphi					isrun()	
Ipkn	Ipkn	Upkn					isstop()	
Ipkp	Ipkp	Upkp					log()	
Ipp	Ipp	Upp					ln()	
Irect	Irect	Urect					reset()	
RngI	RngI	RngU					scale_i()	
Iscal	Iscal	Uscal					scale_u()	
Env	OvrI						sin()	
OvrI							sqrt()	
OvrU							start()	
P							stop()	
PF							unfreeze()	
PHI							if();fi	
Q							2.7182818 (e)	
Rser							3.1415927 (π)	
S							1.2566e-6 (μ ₀)	
Uac							$8.854e-12 (\epsilon_0)$	
Ucf								
Udc								
Uden								
Udcp								
Utrms								
Uff								
Uphi								
Upkn								
Upkp								
Upp								
Urect								

<u>Instrument controls</u> <u>LMG450</u>

Default	Current	Voltage	Power	Int. Value	Measure	Custom	Misc.	IF/IO
RngU								
Uscal								
var0-11								
Xser								
Z								

prCE Harmonic measuring mode

Default	Current	Voltage	Power	Measure	Custom	Misc.	IF/IO
f	f	f	f	Per	Env	abs()	Ain
Ih	Ih	Uh	Ph	Mtime	var0-11	acos()	DigFrq
Imav	Imav	Uthd	Pav			asin()	Zero
Iav	Iav	UL	PFm			bell()	
Ifm	Ifm	UMax	Qh			cos()	
Ithd	Ithd	UP	Sh			digin()	
IL	IL	OvrU	P			dout_on()	
Im	Im	Utrms	PF			dout_off()	
IP	IP	RngU	Q			freeze()	
Ipohl	Ipohl		Rser			isrun()	
Ph	Ipohc		S			isstop()	
Pav	Ithc		Xser			log()	
PFm	Itrms		Z			ln()	
Ipohc	RngI					reset()	
Qh	Iscal					scale_i()	
Sh	OvrI					scale_u()	
Ithc						sin()	
Uh						sqrt()	
Uthd						start()	
UL						stop()	
UMax						unfreeze()	
UP						if();fi	
Itrms						2.7182818 (e)	
RngI						$3.1415927 (\pi)$	
Iscal						1.2566e-6 (μ ₀)	
Env						8.854e-12 (ε_0)	
OvrI							
OvrU							
P							
PF							
Q							
Rser							
S							
Utrms							
RngU							
Uscal							
var0-11							

Default	Current	Voltage	Power	Measure	Custom	Misc.	IF/IO
Xser							
Z							

CE Flicker measuring mode

CLIII	Kei iiie	asuring	moue					
Default	Current	Voltage	Power	Int. Value	Measure	Custom	Misc.	IF/IO
Uhwcf	f	Uhwcf	Phw	Uhwcf	Per	Env	abs()	Ain
dcl	dcs	dcl	f	dcl	Mtime	var0-11	acos()	DigFrq
dtl	dts	dtl	P	dmaxl	FlkPer		asin()	Zero
dmaxl	dmaxs	dmaxl	PF	Pltl			bell()	
Pltl	Plts	Pltl	Q	Pmoml			cos()	
Pmoml	Pms	Pmoml	Rser	Pstl			digin()	
Pml	Pmoms	Pml	S	Upkph			dout_on()	
Phw	Uhws	Phw	Xser				dout_off()	
Uhwl	Psts	Uhwl	Z				freeze()	
Pstl	Ithd	Pstl					isrun()	
Upkph	Itrms	Upkph					isstop()	
f	RngI	f					log()	
des	Iscal	Uthd					ln()	
dts	OvrI	OvrU					reset()	
dmaxs		Utrms					scale_i()	
Plts		RngU					scale_u()	
Pms		Uscal					sin()	
Pmoms							sqrt()	
Uhws							start()	
Psts							stop()	
Ithd							unfreeze()	
Uthd							if();fi	
Itrms							2.7182818 (e)	
RngI							3.1415927 (π)	
Iscal							1.2566e-6 (μ ₀)	
Env							$8.854e-12 (\varepsilon_0)$	
OvrI								
OvrU								
P								
PF								
Q								
Rser								
S								
Utrms								
RngU								
Uscal								
var0-11								
Xser								
Z								
				I		1	I.	

Instrument controls LMG450

HARM100 measuring mode

Default	Current	Voltage	Power	Measure	Custom	Misc.	IF/IO
D	f	f	D	Per	Env	abs()	Ain
f	Ih	Uh	f	Mtime	var0-11	acos()	DigFrq
Ih	Ithd	Uthd	Ph			asin()	Zero
Ithd	IP	UP	Qh			bell()	
IP	Itrms	Utrms	Sh			cos()	
Ph	RngI	RngU	P			digin()	
Qh	Iscal	Uscal	PF			dout_on()	
Sh	OvrI	OvrU	Q			dout_off()	
Uh			Rser			freeze()	
Uthd			S			isrun()	
UP			Xser			isstop()	
Itrms			Z			log()	
RngI						ln()	
Iscal						reset()	
Env						scale_i()	
OvrI						scale_u()	
OvrU						sin()	
P						sqrt()	
PF						start()	
Q						stop()	
Rser						unfreeze()	
S						if();fi	
Utrms						2.7182818 (e)	
RngU						3.1415927 (π)	
Uscal						1.2566e-6 (μ ₀)	
var0-11						$8.854e-12 (\epsilon_0)$	
Xser							
Z							

Select one value with the rotary knob and press *Enter* or the rotary knob to copy the list item into the edit line. If you have a multi channel value (e.g. analogue inputs) you have to enter a ':' behind this value and then the number of the channel (e.g. the identifier for the analogue input 3 would be 'Ain:3'). If you don't specify this number, '1' is the default value. Confirm your choice with *Enter*.

If the value is an array value, the desired index is entered in brackets '[' and ']' (example the 5th harmonic of the voltage would be Uh[5]). You can also combine this values: Uh:2[5] would be the 5th harmonic of the voltage of the second channel. If you don't specify this number, '0' is the default value. Confirm your choice with *Enter*.

To select another position in the text, you have to set **Mode** to 'move' or 'line'. With 'move' you move character by character, with 'line' you move line by line, which is much faster in bigger text.

With **new line** you can insert a linefeed (if you have a multi line input box). Especially in conjunction with the script editor you can reach a list of useful functions and operators by pressing *Misc*.

Finally close you inputs with **End**.

4.6 Entering numerical values

If you have entered a value by the numerical keypad and move the cursor to the right end and move the rotary knob to the right then the modifiers ' μ ', 'm', 'k' and 'M' appear. So it is more simple to enter big or small values.

5 Normal measuring mode

In the normal measuring mode the LMG450 works as a four channel power meter. The voltage, current and power are measured directly, many other values are derived from these values.

5.1 Measuring configuration (Measuring)

When you have come to this menu by pressing *Measure* you first have to choose **Norm(a)l** to enter this mode. With the rotary knob you can select three tabs ('Globals', 'Group A' and 'Group B'). Pressing the rotary knob, you can do several settings in each tab.

5.1.1 Globals tab

Here you setup all values which are global to the instrument (independent from the groups).

Cycle Here the cycle time in seconds is defined. Valid values are from 0.05s to 60s. Any value in steps of 10ms is allowed. A value of 0ms defines the external cycle time. See chapter '14.1.1, External Synchronisation (Sync.)' and following.

During every cycle time the values of voltage, current and power are measured. At the end of each interval the measured values are computed to the displayed values. The cycle time has always to be bigger or same like the (fundamental or basic) period time of the signal.

Aver Here you can setup, how many measuring cycles are averaged for the display. For example: If you choose 5 cycles, the display will always be averaged over the last 5 cycles (sliding average!).

Wire Here you can setup, with which wiring you want to measure. Please see chapter 2.4, 'The group concept' for further details.

Aron This point is only available when you have chosen wiring 'A:1+2 B:3+4'. If you connect a 3 phase 3 wire system in aron circuit (see chapter 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems') you have to measure the voltages U₁₃ and U₂₃. U₁₂ is calculated by the instrument. But usually you would use the three voltages U₁₂, U₂₃ and U₃₁. So you measure U₁₃ instead of U₃₁ with U₁₃=-U₃₁. For most values this does not matter, but in the scope display, you would see, that U₁₃ has not 120° against U₁₂ but 60°. This is physically correct (you see the voltages connected to the instrument), but this is not what you expected. So if you switch the Aron setting to 'on' the display of U₁₃ is inverted, so that you see U₃₁. Only in the case you have a real 2 phase 3 wire system, you should set Aron to 'off'

to see the real phase shift between the phases.

The voltage measured with the third channel is also inverted.

5.1.2 Group A/B tab

The settings in group A and B are identical, so they are just described once. Each setting influences all channels which belong to the group!

Sync Selects the signal which is used for synchronisation of all channels belonging to this group. There are following possible settings:

U The voltage signal is used (channel 1 in group A and channel 4 in B)

I The current signal is used (channel 1 in group A and channel 4 in B)

X Extended Trigger. See **Xtrig**.

Line The line signal is used

Extn The signal at the external synchronisation jack is used.

Depending on the value of **Sync** there is one softkey which changes from **Xtrig** (setting 'X') to **Coupl** (all other settings).

Coupl Selects how the voltage or current signal is coupled to the following trigger stage. This setting has **no** influence on the measured signals!

AC+DC	The signal is directly coupled, including all signal parts.
LP<80Hz	Low Pass Filter. Only the signal components below 80Hz are used
LP<300Hz	Low Pass Filter. Only the signal components below 300Hz are used. This is
	very useful, when measuring frequency converters with fundamental
	frequencies below 300Hz and clock frequencies above 300Hz.
HP>10Hz	High Pass Filter. Only the signal components above 10Hz are used. This is
	useful to reject a DC component in the signal.
HP>30Hz	High Pass Filter. Only the signal components above 30Hz are used. This is
	useful to reject a DC component in the signal.
BP 10-300Hz	Band Pass Filter. Only the signal components between 10Hz and 300Hz are
	used.
BP 30-80Hz	Band Pass Filter. Only the signal components between 30Hz and 80Hz are
	used. This is useful when synchronising to line frequent signals with very
	much distortion.
AM 10-300Hz	Amplitude (De)Modulation. The signal will be demodulated when measuring
	AM signals. Only the envelope between 10Hz and 300Hz is used. This is
	useful, when measuring electronic gears or transformers.

Xtrig Here you reach a menu where you can define very precise, what should be your trigger condition. This menu should only be used from very experienced users, because if you select wrong conditions, you might get wrong measuring results.

Signl Here you define the signal you want to trigger on. Available are: u, i, p, u², i², u_{filt}, i_{filt}, p_{filt}. For the meaning of this values please watch the functional diagram in 14.5, 'Functional block diagram computing unit'

Filt Here you can define a digital filter which influences the signal to be triggered on. Please note 2 points:

- 1. For Example: You have a 50Hz signal and select p, you have a 100Hz p-wave! So a 87.5Hz filter will influence this trigger signal!!!
- You should always try to switch the hf rejection filter on (see point
 Filter/S-Cpl, Filt below) to prevent distortions on the trigger signal.
 Especially when using frequency converters this hf rejection filter should be switched on.

Level Here you select the trigger level. If you for example select 'u' and a level of 100.0 the instrument will be triggered each time the voltage crosses the 100V line. Please note: If you select u² the level is 100V² and you trigger if |u|>10V!!

Hyst Usually you have a small noise on the signal. Without a hysteresis you might get several level crossings at a single 'real' crossing. With the hysteresis you can prevent this. For example you have a **Level** of 100V and a **Hyst** of 5V. If your signal comes from a value smaller than 95V it has to climb up to 105V to get a positive crossing. If it comes from a value greater than 105V it has to fall below 95V to get a negative crossing.

back returns to the last menu.

What can you do with this very special trigger mode?

If you have signals with a big DC part and a quiet small AC part (e.g. pulsed loads with DC supply) you have the problem to trigger on the frequency of the AC part. The solution is, to set the **Level** to a value of about the DC part, so you get a good trigger level.

Another example is to measure pulse controlled currents. In fact this signals are AM signals with a 50Hz carrier and for example a 1.5Hz modulator. To get correct measuring results you would have to trigger on the 1.5Hz signal. To do this you just select 'i*i' as source and a 30Hz filter. So you have built up a quadratur demodulator. Now you select a trigger level (depending on the current) and your instrument will synchronise to the 1.5Hz signal of your pulse control.

Filt Here you can switch on/off the filters in the measuring signal path of voltage and current. This filters are only in the signal way (they influence the sampling values) and don't influence the synchronisation settings 'U' and 'I'. But they influence the synchronisation **Xtrig** because it is using the sampling values! Possible settings are:

Setting	Meaning
off	All filters are switched off
HF-Rej	The analogue HF rejection filter is switched on. Especially when using
	frequency converters this HF rejection filter should be switched on.
30Hz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 30Hz is used
60Hz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 60Hz is used
87.5Hz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 87.5Hz is used
175Hz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 175Hz is used
1.4kHz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 1.4kHz is used
2kHz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 2kHz is used
2.8kHz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 2.8kHz is used
6kHz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 6kHz is used
9.2kHz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 9.2kHz is used
18kHz	Additionally to the HF rejection filter a digital Low-Pass Filter with a cut off
	frequency of about 18kHz is used

Especially when using frequency converters this HF rejection filter should be switched on.

S-Cpl Here you define the signal coupling. This setting has <u>no</u> influence to the trigger signal! Possible settings are:

AC+DC: All parts of the signal are taken into calculation.

AC Only the AC parts of the signal are taken into calculation. The DC part is separated. Please note, that this separation is done by software after the measuring and not by hardware! So you don't have any advantages concerning the measuring range and no influence to the scope values. The advantage of this coupling mode is the better accuracy, because all DC errors are eliminated.

back returns you to main menu.

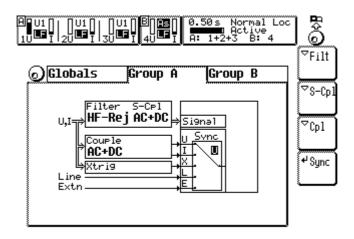


Figure 23: Measuring menu in normal mode

5.2 Measuring ranges (Range)

When you came to this menu by pressing *Range* you can setup all the ranges and scalings for the different measuring channels. You see three tabs ('Group A', 'Group B' and 'Sense/More').

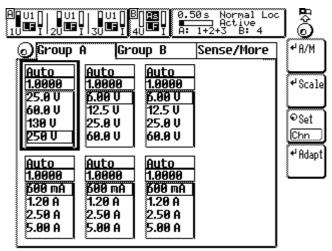


Figure 24: Range menu

5.2.1 Group A/B tab

The settings in group A and B are identical, so they are just described once.

A/M With A/M the automatic or manual range setting is selected. This is only possible in the normal measuring mode. In all other modes the manual range is selected.

Scale The Scale button allows you to enter a scaling factor. With this scaling factor all values of this channel (and the power) are multiplied. This setting is usually used to enter the transformer ratio of current clamps or voltage transformers.

Example 1:

You have a current clamp with 1000A/1A ratio. In this case enter 1000 as scaling

factor.

Example 2:

You have a current clamp with 1A/10mV ratio. This is equal to 100A/V, so you have to enter 100 as scaling.

Set Here you define the action of the rotary knob. You can change between the different channels ('Chn') or you can change the range in the selected channel ('Rng').

Adapt By this you force all channels of this group to work with the same settings like the actual one. If the actual one works in automatic mode all other work also in automatic mode. In manual mode all channels get the same range.

Please note, that the scaling is not adapted! The reason is, that sometimes the scaling factor is used to adjust an external sensor. If the scaling would also be adapted, the adjustment would be lost.

By pressing the rotary knob again you leave the set mode and can select another tab.

5.2.2 Sense/More tab

Here you get information about the connected external current sensors. If they are connected, you get automatically a new list of current ranges (depending on the connected sensor).

Use allows you to activate or deactivate an external sensor. You have to select the sensor with the rotary knob and then to press the softkey.

How to connect your own current sensor please refer chapter ",14.1.2".

Some notes for auto ranging

There are some special points you have to know, when using the auto range function:

- If you want to measure a single peak value never use the auto range function. The reason for this is, that the autorange function does not detect a too low range until it is overloaded! When it is overloaded and the range is changed, the last measurement might be invalid.
- Do not use the auto range function for very precise measurements. While a measurement you don't directly see which range is actually selected. Afterwards it is not possible to say what was the selected range and therefore you can't make an error calculation.
- Do not use the autorange function for measurings without gaps (e.g. energy, harmonics or flicker). The reason for this is the setup time of the measuring channels after a range change.

5.3 Definition of measuring values

Following you find the definitions for all measuring values in the normal operation mode. The values are divided in two sections:

- The values from single measuring are measured while one measuring cycle and are independent from all other measuring cycles.
- The integrated values are calculated over several cycles.

The following basic definitions are used:

- u(t) The instantaneous value if the voltage used for calculation
- i(t) The instantaneous value if the current used for calculation
- The time of an integer number of the periods of the synchronisation signal. The integer factor depends on the chosen measuring cycle time. This time can vary from cycle to cycle! T is the real measuring time.

The values u(t) and i(t) used for calculation can be the directly in channel n measured values $u_n(t)/i_n(t)$ or calculated from them (depending on the wiring and the selected display channel):

Wiring '4+0 Channels'

Display channel	u(t)	i(t)
1	$u_1(t)$	$i_1(t)$
2	$u_2(t)$	i ₂ (t)
3	u ₃ (t)	i ₃ (t)
4	$u_4(t)$	i ₄ (t)

Wiring '3+1 Channels'

Display channel	u(t)	i(t)
1	$u_1(t)$	$i_1(t)$
2	$u_2(t)$	i ₂ (t)
3	$u_3(t)$	i ₃ (t)
4	$u_4(t)$	i ₄ (t)

Wiring '2+2 Channels'

Display channel	u(t)	i(t)
1	$u_1(t)$	$i_1(t)$
2	$u_2(t)$	i ₂ (t)
3	u ₃ (t)	i ₃ (t)
4	$u_4(t)$	i ₄ (t)

Display channel	u(t)	i(t)
5	$-u_1(t)+u_2(t)$	$-i_1(t)-i_2(t)$
6	$-u_3(t)+u_4(t)$	$-i_3(t)-i_4(t)$

For further information about the tables see also chapter 2.4, 'The group concept'.

Linked values

If you have installed the option L45-O6 (star to delta conversion) you get the following additional wirings. The values in the column 'Measuring channel numbers' define the internal calculation of the DSPs (the numbers are the numbers of the measuring channels!!). The column 'Circuit number' defines the physical values of your circuit. This relations are correct, if you connect your instrument in the correct way. For this refer to the measuring circuit chapter below each table.

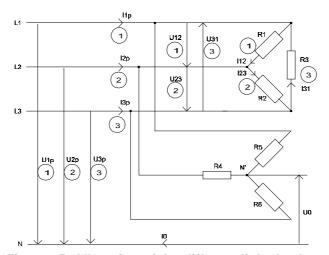


Figure 25: Allocation of the different linked values

Please not also the hints and restrictions given in 2.5, 'Linked values, star to delta conversion (option L45-O6)'.

Wiring '3+1, U*I*-> U∆I∆'

	Measuring	channel	Circuit numbers	
	numbers			
Display channel	u(t)	i(t)	U	I
1	$u_1(t)$	$i_1(t)$	U1	I1
2	$u_2(t)$	$i_2(t)$	U2	I2
3	u ₃ (t)	i ₃ (t)	U3	I3
4	u ₄ (t)	i ₄ (t)	U4	I4
5	$u_1(t)$ - $u_2(t)$	$\underline{\mathbf{i}_1(\mathbf{t}) - \mathbf{i}_2(\mathbf{t})}$	U12	I12
		3		
6	$u_2(t)$ - $u_3(t)$	$\underline{\mathbf{i}_2(\mathbf{t}) - \mathbf{i}_3(\mathbf{t})}$	U23	I23
		3		
7	$u_3(t)$ - $u_1(t)$	$\underline{\mathbf{i}_3(\mathbf{t}) - \mathbf{i}_1(\mathbf{t})}$	U31	I31
		3		

For circuit see 3.3.2, 'Measuring circuit for measuring efficiency of 3/1 phase systems'

Wiring '3+1, U∆I*-> U∆I∆'

	Measu	ring channel	Circuit numbers	
	numbers			
Display channel	u(t)	i(t)	U	I
1	$u_1(t)$	$i_1(t)$	U12	I1
2	$u_2(t)$	i ₂ (t)	U23	I2
3	$u_3(t)$	i ₃ (t)	U31	I3
4	u ₄ (t)	i ₄ (t)	U4	I4
5	u ₁ (t)	$\frac{\mathbf{i}_1(\mathbf{t}) - \mathbf{i}_2(\mathbf{t})}{3}$	U12	I12
6	u ₂ (t)	$\frac{\mathbf{i}_2(\mathbf{t}) - \mathbf{i}_3(\mathbf{t})}{3}$	U23	I23
7	u ₃ (t)	$\frac{\mathbf{i}_3(\mathbf{t}) - \mathbf{i}_1(\mathbf{t})}{3}$	U31	I31

For circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L45-O6)'

Wiring '3+1, U∆I*-> U*I*'

	Measuring channel		Circuit	
	numbers		numbe	ers
Display channel	u(t)	i(t)	U	I
1	$u_1(t)$	$i_1(t)$	U12	I1
2	$u_2(t)$	i ₂ (t)	U23	I2

	Measuring channel		Circuit	
	numbers		numbers	
Display channel	u(t)	i(t)	U	I
3	u ₃ (t)	i ₃ (t)	U31	I3
4	u ₄ (t)	i ₄ (t)	U4	I4
5	$\frac{\mathbf{u}_1(\mathbf{t}) - \mathbf{u}_3(\mathbf{t})}{3}$	i ₁ (t)	U1	I1
6	$\frac{\mathbf{u}_2(\mathbf{t}) - \mathbf{u}_1(\mathbf{t})}{3}$	i ₂ (t)	U2	I2
7	$\frac{\mathbf{u}_3(\mathbf{t}) - \mathbf{u}_2(\mathbf{t})}{3}$	i ₃ (t)	U3	I3

For circuit see 3.3.3, 'Measuring circuit (typical) for star to delta conversion (option L45-O6)'

Wiring '2+2, U∆I*-> U∆I∆'

	Measuring channel numbers		Circuit numbers	
Display channel	u(t)	i(t)	U	I
1	$u_1(t)$	$i_1(t)$	U13	I1
2	$u_2(t)$	i ₂ (t)	U23	I2
3	u ₃ (t)	i ₃ (t)	U13'	I1'
4	$u_4(t)$	i ₄ (t)	U23'	I2'
5	$-u_1(t)+u_2(t)$	$-i_1(t)-i_2(t)$	U12	I3
6	$-u_3(t)+u_4(t)$	$-i_3(t)-i_4(t)$	U12'	I3'
7	$u_1(t)$	$\underline{\mathbf{i}}_{2}(\mathbf{t}) - 2\mathbf{i}_{1}(\mathbf{t})$	U12	I12
		3		
8	$-u_2(t)$	$-\mathbf{i}_1(\mathbf{t}) - 2\mathbf{i}_2(\mathbf{t})$	U23	I23
		3		
9	$u_2(t)-u_1(t)$	$\underline{\mathbf{i}_2(\mathbf{t}) - \mathbf{i}_1(\mathbf{t})}$	U31	I31
		3		
10	$u_3(t)$	$\underline{\mathbf{i}_4(\mathbf{t}) - 2\mathbf{i}_3(\mathbf{t})}$	U12'	I12'
		3		
11	$-u_4(t)$	$\frac{-i_3(t)-2i_4(t)}{}$	U23'	I23'
		3		
12	$u_4(t)$ - $u_3(t)$	$\frac{\mathbf{i}_4(\mathbf{t}) - \mathbf{i}_3(\mathbf{t})}{\mathbf{i}_4(\mathbf{t}) - \mathbf{i}_3(\mathbf{t})}$	U31'	I31'
		3		

For circuit see 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems'

Wiring '2+2, U∆I*-> U*I*'

	Measuring channel numbers		Circuit numbers	
Display channel	u(t)	i(t)	U	I
1	$u_1(t)$	$i_1(t)$	U13	I1
2	u ₂ (t)	i ₂ (t)	U23	I2
3	$u_3(t)$	i ₃ (t)	U13'	I1'
4	$u_4(t)$	i ₄ (t)	U23'	I2'
5	$-\mathbf{u}_1(\mathbf{t})+\mathbf{u}_2(\mathbf{t})$	$-i_1(t)-i_2(t)$	U12	I3
6	$-u_3(t)+u_4(t)$	$-i_3(t)-i_4(t)$	U12'	I3'
7	$2u_1(t) - u_2(t)$	$i_1(t)$	U1	I1
	3			
8	$-\mathbf{u}_{2}(t)-\mathbf{u}_{1}(t)$	$-i_1(t)-i_2(t)$	U2	I2
	3			
9	$\frac{2\mathbf{u}_2(\mathbf{t}) - \mathbf{u}_1(\mathbf{t})}{2\mathbf{u}_2(\mathbf{t}) - \mathbf{u}_1(\mathbf{t})}$	$i_2(t)$	U3	I3
	3			
10	$\frac{2u_3(t)-u_4(t)}{2u_3(t)-u_4(t)}$	i ₃ (t)	U1'	I1'
	3			
11	$\frac{-\mathbf{u}_4(\mathbf{t}) - \mathbf{u}_3(\mathbf{t})}{-\mathbf{u}_3(\mathbf{t})}$	$-i_3(t)-i_4(t)$	U2'	I2'
	3			
12	$\frac{2u_4(t)-u_3(t)}{}$	i ₄ (t)	U3'	I3'
	3			

For circuit see 3.3.5, 'Measuring circuit for measuring efficiency of 3/3phase systems'.

For further information about the tables see also chapter 2.5, 'Linked values'.

5.3.1 Values from single measuring

Voltage and current

true root mean square:
$$Utrms = \sqrt{\frac{1}{T} \int_{t=0}^{T} u(t)^2 dt}$$
 $Itrms = \sqrt{\frac{1}{T} \int_{t=0}^{T} i(t)^2 dt}$

DCn negative DC component:

$$Udcn = \frac{1}{T} \int_{t=0}^{T} \begin{cases} u(t) \ for \ u(t) < 0 \\ 0 \ for \ u(t) \ge 0 \end{cases} dt \qquad Idcn = \frac{1}{T} \int_{t=0}^{T} \begin{cases} i(t) \ for \ i(t) < 0 \\ 0 \ for \ i(t) \ge 0 \end{cases} dt$$

DCp positive DC component:

$$Udcn = \frac{1}{T} \int_{t=0}^{T} \begin{cases} u(t) \ for \ u(t) \ge 0 \\ 0 \ for \ u(t) < 0 \end{cases} dt \qquad Idcn = \frac{1}{T} \int_{t=0}^{T} \begin{cases} i(t) \ for \ i(t) \ge 0 \\ 0 \ for \ i(t) < 0 \end{cases} dt$$

DC component:
$$Udc = \frac{1}{T} \int_{t=0}^{T} u(t)dt$$

$$Idc = \frac{1}{T} \int_{t=0}^{T} i(t)dt$$

Normal measuring mode LMG450

AC component:
$$Uac = \sqrt{Utrms^2 - Udc^2}$$
 $Iac = \sqrt{Itrms^2 - Idc^2}$

peak-peak value:
$$Upp = \max(u(t)) - \min(u(t))$$
 $Ipp = \max(i(t)) - \min(i(t))$

rectified value:
$$Urect = \frac{1}{T} \int_{t=0}^{T} |u(t)| dt \qquad Irect = \frac{1}{T} \int_{t=0}^{T} |i(t)| dt$$

crest factor:
$$Ucf = \frac{Upk}{Utrms}$$

$$Icf = \frac{Ipk}{Itrms}$$

form factor:
$$Uff = \frac{Utrms}{Urect}$$

$$Iff = \frac{Itrms}{Irect}$$

Inrush current:
$$Iinr = max(|i(t)|)$$

Power

active power:
$$P = \frac{1}{T} \int_{t=0}^{T} u(t)i(t)dt$$

reactive power
$$Q = \sqrt{S^2 - P^2}$$

apparent power:
$$S = Utrms * Itrms$$

power factor:
$$PF = \lambda = \frac{|P|}{S}$$

Behind the power factor might be a 'i' or 'c' showing, that the load is inductive or capacitive. This decision is only done under following conditions:

$$\lambda < 0.999$$
 and $1.05 < Uff < 1.2$ and $1.05 < Iff < 1.2$ and $f < 1kHz$

This means, that voltage and current are nearly sinusoidal. In all other cases there is neither 'i' nor 'c'.

Please note: The i/c indication was developed for usual line applications. When the usage of the channels is very low or you work with very high frequencies you should take care, if the i/c indication is correct or not.

angle:
$$\varphi = \arccos \lambda \quad \text{with} \quad \varphi = \varphi_{ui} = \varphi_u - \varphi_i$$

The sign of the angle is derived from the i/c indication, '+' for an inductive load, '-' for a capacitive one. Here the current is the reference. This value is only valid at sinusoidal wave forms! The value can be in the range $\pm 180^{\circ}$, values outside $\pm 90^{\circ}$ usually indicate negative active power.

Impedances

apparent impedance:
$$Z = \frac{Utrms}{Itrms}$$

active impedance:
$$Rser = \frac{P}{Itrms^2}$$

reactive impedance
$$Xser = \frac{Q}{Itrms^2}$$

5.3.2 Integrated values

The following basic definitions are used:

- The value from the measuring cycle number n.
- N Is the number of measuring cycles for the integration. This number depends on the real measuring times and on the desired integration time.

Energy

active energy:
$$EP = \sum_{n=0}^{N} P_n * T_n$$

reactive energy:
$$EQ = \sum_{n=0}^{N} Q_n * T_n$$

apparent energy
$$ES = \sum_{n=0}^{N} S_n * T_n$$

Average values

average active power:
$$Pm = \frac{EP}{\sum_{n=0}^{N} T_n}$$

average reactive power:
$$Qm = \frac{EQ}{\sum_{n=0}^{N} T_n}$$

average apparent power
$$Sm = \frac{ES}{\sum_{n=0}^{N} T_n}$$

Miscellaneous

charge:
$$q = \sum_{n=0}^{N} Idc_n * T_n$$

integration time:
$$t = \sum_{n=0}^{N} T_n$$

5.3.3 **Total values**

This are values which are calculated over several channels of one group. Following symbols are used:

- f first channel of the group
- last channel of the group 1
- number of the display channel for the total values S

These three symbols depend on the wiring. Please refer to 2.4, 'The group concept' and 2.5, 'Linked values' for details

Following values are calculated for the total values display channels (all other values are invalid):

collective sum voltage:
$$U_{s_{TRMS}} = \sqrt{\sum_{n=f}^{l} U_{n_{TRMS}}^2}$$

collective sum current:
$$I_{s_{TRMS}} = \sqrt{\sum_{n=f}^{l} I_{n_{TRMS}}^2}$$

$$P_s = \sum_{n=f}^l P_n$$

$$S_s = U_s * I_s$$

$$Q_s = \sqrt{S_s^2 - P_s^2}$$

$$\lambda_s = \frac{|P_s|}{S_s}$$

$$f_s = f_f$$

$$EP_s = \sum_{n=0}^{N} P_s T_n$$

$$EQ_s = \sum_{n=0}^{N} Q_s T_n$$

$$ES_s = \sum_{n=0}^{N} S_s T_n$$

$$Pm_s = \frac{EP_s}{\sum_{n=0}^{N} T_n}$$

average reactive power:
$$Qm_s = \frac{EQ_s}{\sum_{n=0}^{N} T_n}$$

average apparent power:
$$Sm_s = \frac{ES_s}{\sum_{n=0}^{N} T_n}$$

All this calculation are in accordance with DIN40110.

5.4 Display of values

For the display of the values you can choose several menus. Also in this menus we have the group concept. With the rotary knob you can select the desired group. Now you can have four softkeys (maybe not all appear, depending on the selected wiring, the group and installed options):

Chns By this you can select, which channel you want to see. A second softkey bar appears, where you can select the channel.

Link Here you can select which linked channel you want to see (only if option L45-O6 star to delta conversion is installed).

Sum Here you can select the total values of the group (over several channels).

Displ Here you can setup if you want to see few values in a big font or more values in a smaller font. This softkey may be inactive, if you watch several channels.

Above the displayed values you see a header which describes in several fields, what you see:

Chnx You see the values from the measuring channel x. This is always a measuring channel from the rear side of the instrument.

Linkxy You see the values of a linked channel. xy are the channels which are used to calculate the value.

SUM(x-y) You see the values of a sum channel. x and y are the first and last channels which are used to calculate the value

(x,y) This field is optional. It shows you, which values of your circuit are displayed on this channel.

n:x It belongs to group n. x is the number of the display channel. You have to use this number (together with the ':'!) for example in the script editor or in the computer interface.

The following examples exit if you have the wiring 'A:1+2 B:3+4' and the Aron field is switched on in the measuring menu.

Example: Chn2 (U23,I2) A:2

This is the <u>measuring channel</u> 2. It should be <u>connected</u> to U23 and I2 of your circuit. It belongs to group A and has the display channel number 2.

Example: Link34 (U12,I3) B:6

This is a <u>linked channel</u>, which is calculated from values of channel 1 and 2. The displayed values <u>represent</u> U12 and I3 of your circuit. It belongs to group B and has the display channel number 6.

Example: Sum(1-2) A:13

This is the sum channel which is calculated over the display channels 1 to 2. It belongs to group A and has the display channel number 13.

For further information please refer also 2.4, 'The group concept' and 2.5, 'Linked values'.

5.4.1 Default

With *Default* you see the most important values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'.

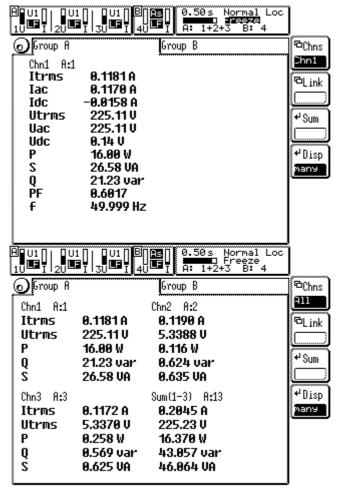


Figure 26: Default display with one and four channels

5.4.2 Voltage

With *Voltage* you see the most important voltage values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'.

5.4.3 Current

With *Current* you see the most important current values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'. With the **Inrsh** key you can reset the last measured inrush current to 0. This softkey is only available when the manual measuring range is selected for the current and the voltage! The average in the measuring menu has to be set to 1! If the inrush current is too big for the measuring range, a dashed line is displayed.

5.4.4 Power

With *Power* you see the most important power values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'. Further on you get the

following resistor values: Z, X and R. <u>Please note that the values of X and R are only</u> correct, if the voltage and current have a sinusoidal waveform!

5.4.5 Energy

In this menu (you reach it by *Int. Val*) you see the most important energy values as well as derived values which also depend on time. For the handling please see the general description in chapter 5.4, 'Display of values'.

5.4.5.1 Integration menu

In this menu (you reach it by *Int. Time*) you defines the measuring conditions for time depending signals. **Reset** sets the display values to their default state (i.e. 0 for all energy values). This is only possible if the state is 'Hold'.

Mode Defines the integration mode. You can only change the mode, if the state is 'RESET'.

off No integration can be done.

continuous After the integration is started it measures continuously until *Stop* is

pressed. With the start of this measurement the values are

automatically reset to 0.

interval After the integration is started it measures continuously until the

interval **DUR** is over. With the start of this measurement the values

are automatically reset to 0.

periodic Same like 'interval', but with two differences:

- At the end of one interval a new one is started.

- The display is only updated at the end of an interval and not

after every cycle.

summing After the integration is started it measures continuously until *Stop* is

pressed. With the start of the integration the values are NOT reset

to 0!

Start Time,

Start Date This are the start time and date of an integration. You <u>have to</u> press *Start* to

change the state of the integration changes to 'wait'. If the entered time is

reached, the integration starts.

DUR This is the time of the time interval in interval and periodic integration mode.

Runtime is the running integration time. Please note, that this time can be smaller than the real time, for example because of invalid measuring cycles while a change in the measuring ranges.

Start of integration

In general there are three ways to start an integration. You can either enter a start time with **Start Time, Start Date**, or you can simply press the *Start* button or you can start via the external sync jack of the LMG450 (see 14.1.1). The first cycle which is taken into account is the cycle which follows the actual cycle.

The integration time should be an integer number of times the cycle time.

Stop of integration

The last cycle which is taken into account is the cycle when the *Stop* button or any other stop signal appear.

State of integration

The integration can be in 6 different states:

- Wait If the start time is later than the actual time and you have started the integration this state appears until the start time is reached.
- Start This state is displayed from the logical start of integration (e.g. pressing the *Start* button) until the physical start of integration which is always the begin of the next cycle.
- Run This is displayed while the physical integration is running
- Stop This state is displayed from the logical end of integration (e.g. pressing the *Stop* button) until the physical end of integration which is always the end of the actual cycle.
- Hold This is displayed if the integration has finished. The integrated values are hold, until the integration continuous (only summing mode) or the values are reset by **RESET** or *Start*.

The logical integration is running, if the state is displayed inverse.

5.4.6 Graphical display

With *Graph* you see the graphical display of the normal measuring mode. Also in this menu we have the group concept. With the rotary knob you can select different tabs ('Scope A', 'Scope B', 'Vec.A', 'Vec.B' and 'Extended').

5.4.6.1 Scope A/B

The settings in group A and B are identical, so they are just described once.

Left of this graph you see the Y scaling (ydiv), the Y scaling factor (yzoom) and the four selected signals. Under the graph you see the start position of the graph in seconds, the X

scaling factor (xzoom) and the X scaling (x/div). By pressing the rotary knob you can do the following settings:

Graph Here you can select one of the four scope channels 'A' to 'D'.

Signal Here you can choose the signal to be displayed. The possible values depend on the chosen wiring. In principle you have:

ix: The current of channel x after all activated filters.

ux: The voltage of channel x after all activated filters.

px: The power of channel x after all activated filters.

Which of this values are available depends on the setup on the 'Extended' tab.

zoom By pressing this softkey, you get a small symbol for the rotary knob in the softkey. This means, that from now the rotary knob is used for the zooming. By pressing this softkey several times you can choose if you want to change the x-zoom or y-zoom. You have to confirm your selection with *Enter*.

move By pressing this softkey, you get a small symbol for the rotary knob in the softkey. This means, that from now the rotary knob is used for the moving. By pressing this softkey several times you can choose if you want to change the following setting:

- x-pos The signal is moved if you use the rotary knob. So it is possible to see other parts of the wave form.
- The first cursor is moved when using the rotary knob. In the second line below the graph you see the X position in seconds and the value of the wave form at this position. The selected cursor position is constant. That means if you scroll the wave form the cursor can move out of the displayed window. If the cursor is outside the visible screen and you move the cursor, it will be set to the border of the visible screen.
- c2 Same as c1
- c1&c2 Both cursors are moved at the same time. In the second line under the graph you see the time difference and the Y value distance between the two cursors.

Split You can have all graphs in the same screen (good for relations between different signals) or you can have one graph for each signal (good if you have many signals)

Figure 27: Scope display with split off/on

5.4.6.2 Plot function

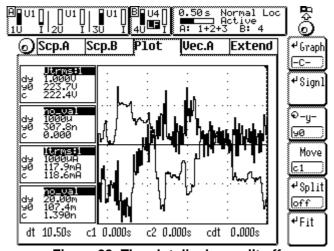


Figure 28: The plot display; split off

In this menu all measured values can be displayed over the time in one or four plots. On the left side, the information segment, the following settings are displayed:

The plotted signal is shown in the colour in which the graph is drawn.

- dy scaling of the y axis per division
- y0 offset of the y axis (value of the centre line)
- c value of the function at the cursor position

Below the graphs the time depending values are displayed:

- dt scaling of the x axis per division
- c1 x value of the first cursor
- c2 x values of the second cursor
- cdt time difference between the cursors

The following settings can be done with the softkeys on the right side:

Chn changes the displayed channel (A-D)

Signl Pressing this softkey a list will open, in which you can adjust the following parameters (refer chapter 4.5):

Signl here you can select the signal to be plot

y/div here you can select the scaling factor of the Y axis

y0 here you can select the offset of the y axis (value of the centre line). Example: If you select y0 = 200V and y/div = 10V the you will see a window from 180V to 220V on the screen.

Each setting is confirmed with *Enter* and rejected with *Esc*.

-y- pressing this softkey - the rotary knob symbol appears in the upper left corner - the adjustments of the y axis can be changed while the plot is running. Each pressing of the button toggles between the parameters dy and y0. The adjusted values can be changed with the rotary knob. The adjustments will be confirmed by pressing the rotary knob or with the *Enter* key.

Move here the cursors are selected. With the rotary knob the cursors will scroll through the plot. For easy reading of the values the plot should be frozen. The scrolling of the cursors can be done for each cursor separately or for both together.

c1 the first cursor is moved. below the graphs the values for the x position in seconds and the value of the function are shown.

c2 same as c1

c1&c2 both cursors are moved at the same time.

Split after pressing this button the display will be split in four separated graphs, refer the following picture:

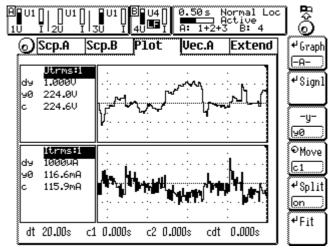


Figure 29: The plot display; split on

Hint: the settings of the cursor are the same for all four to get accurate readings at the selected moment for all channels.

Fit By this the actual selected graph (A to D) is rescaled to fit into the screen.

5.4.6.3 Vec. A/B

The settings in group A and B are identical, so they are just described once.

On this tabs you see the vectors of voltage and current (Fresnel diagramm). In the lower left corner you see the amplitude and the phase angle of the selected signal. In the upper right corner you see the rotating direction of the vectors and the phase counting of the voltages. '1,2,3' means that the zero crossings are in the order 1st, 2nd, 3rd phase. '3,2,1' means that you have the opposite order. By pressing the rotary knob you can do the following settings:

Signl Here you can choose the signal to be displayed. The possible values are voltage or current.

Ref. Here you can choose the reference for the angles:

U U1 is set to 0°

I I1 is set to 0°

None The sync. signal is used as 0° reference.

All angles which are displayed in this menu are relative to this reference angle.

Zoom You can zoom the selected signal to get longer vectors.

Normal measuring mode LMG450

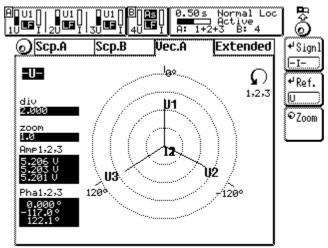


Figure 30: Vector (Fresnel) diagramm

Please note following

- 1. The angels between the voltages are calculated from the time of the zero crossing in each phase. If you have big distortions on the voltage, this values might be wrong. You can use all possible filter to smooth the voltage.
 - When using the 'HARM100' measuring mode, this problems will not occur!
- 2. The angels of the currents are calculated from the power factor. If voltage and current are sinusoidal this value is identical to the cosφ and the calculated angels are correct. If you have distortions in the voltage or current signal, this values might be wrong! You can use all possible filters to smooth the voltage and current. Then you can see the phase shift between the fundamentals.
 - When using the 'HARM100' measuring mode, this problems will not occur!
- 3. In Aron circuit the calculation of the power factors is in general wrong (this is a disadvantage of this circuit!). So also the current angles are wrong (see above). But you can get valid power factors (and angles) if you use the star to delta conversion (option).

For interface access or other usage inside the instrument please refer to following chapters:

```
10.2.4.1.1.9 Phase angle of current
```

10.2.4.1.1.13 Amplitude of current

10.2.4.1.13.9 Phase angle of voltage

10.2.4.1.13.13 Amplitude of voltage

10.2.10.8.3 Reference setting for angles

5.4.6.4 Extended

Here you can setup which sample values are stored for which time. The duration for recording the sample values depends on several points:

- The available memory. This is displayed in the last line.
- The number of signals to be stored. With the rotary knob you can move to a signal and select it by pressing the softkey.

- Cycls allows you to define the minimum duration in times of the cycle time.
- Because of this many influence factors the storing rate and the real duration (both displayed) will vary if you change any of this parameters. In general you can say:
- The bigger the memory (65536 words or 4194304 words) the bigger the record rate. If the full record rate is reached, the duration will increase.
- The fewer signals to be stored, the bigger the record rate. If the full record rate is reached, the duration will increase.
- The shorter the cycle time, the bigger the record rate. If the full record rate is reached, the duration will increase.

If you transfer the sample values to a PC and you want to make evaluations in the frequency domain (e.g. digital filtering or FFT), please make sure that the sampling (record) rate is bigger than twice the bandwidth!

dot The dot joiner connects two following pixels with a line. This function can be set to 'on' or 'off'.

Please note that the grid is always displayed with integer numbers. The cursor positions are calculated from the sample values and have not to fit to the grid.

5.4.7 Custom menu

With *Custom* you see the custom menu. Here you can setup your own menus, calculate formulas and execute programs. See 4.4.3, 'Custom menu' and 4.4.4, 'Script/Formula editor'.

5.5 Storage of values

First you have to change to the menu you want to print out or to store and press *Print/Log* (exact handling see 11, 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out.

6 prCE-Harmonic measuring mode

In the prCE-Harmonic measuring mode the LMG450 works as an high precision harmonic analyser. The number of settings have been reduced to the needed ones to avoid fail handling.

Note!

The synchronisation is fixed to U. For this reason it is important to have a valid signal for synchronisation to get measuring results. **The valid frequency range is from 45 to 65Hz!**

6.1 Measuring configuration (Measuring)

The synchronisation is fixed to the voltage channel. With the rotary knob you can select three tabs ('Globals', 'Group A' and 'Group B').

6.1.1 Global tab

Here the general settings are done.

Eval Selects how the measuring results have to be evaluated:

Class A	The signal is judged according class A of EN61000-3-2:1995 or
	EN61000-3-2:2006
Class B	The signal is judged according class B of EN61000-3-2:1995 or
	EN61000-3-2:2006
Class C-1	The signal is judged according class C, Table 1 of EN61000-3-2:1995
	or EN61000-3-2:2006
Class C-2	The signal is judged according class C, Table 2 of EN61000-3-2:1995
	or EN61000-3-2:2006
Class C-3	The signal is judged according class C, Table 3 of EN61000-3-2:1995
	or EN61000-3-2:2006
Class C-W	The signal is judged according class C, special waveform according
	7.3 b) of EN61000-3-2:2006
Class D	The signal is judged according class D of EN61000-3-2:1995 or
	EN61000-3-2:2006
Table 2	The signal is judged according table 2 of EN61000-3-12:2005
Table 3	The signal is judged according table 3 of EN61000-3-12:2005
Table 4	The signal is judged according table 4 of EN61000-3-12:2005

EN... This selects the standard which defines the exact measuring mode of the harmonic analyser:

2:95/-4-7:93	The combination EN61000-3-2:1995 and EN61000-4-7:1993 is
	active
2:95/-4-7:08	The combination EN61000-3-2:1995 and EN61000-4-7:2002 is
	active
2:06/-4-7:93	The combination EN61000-3-2:2000 and EN61000-4-7:1993 is
	active
2:06/-4-7:08	The combination EN61000-3-2:2000 and EN61000-4-7:2002 is
	active
12:05/-4-7:08	The combination EN61000-3-12:2005 and EN61000-4-7:2002 is
	active

Systm This selects the system which is used for the measurement. There are several possible values:

220V/50Hz, 230V/50Hz, 240V/50Hz

220V/60Hz, 230V/60Hz, 240V/60Hz

120V/50Hz

120V/60Hz

The system is required for example for checking the correct frequency of the measuring setup.

Intv This selects the measuring time for a long time evaluation, for example if you have devices with fluctuation harmonics. The result you can see in the *Int-Value* menu.

Smooth Here you can switch the 1.5s low pass filters for smoothing the fluctuating harmonics on or off. With EN61000-3-2:2006 this point is always on!

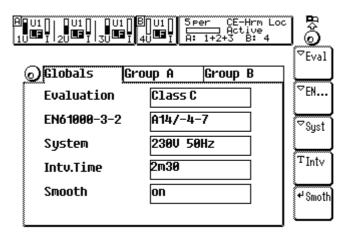


Figure 31: Measuring menu in prCE-Harm mode

6.1.2 Group A/B tab

The settings in group A and B are identical, so they are just described once.

This tab is only accessible if you have chosen EN61000-3-2:2006 with Class C or D or EN61000-3-12:2005!

Here you have to setup the setting which are required for EN61000-3-2:2006. For class C you have to enter the fundamental current and the power factor or your device. For class D you have to enter the active power.

This values are used to calculate the limits. For each value the average measured one is compared to the entered one. If there is a difference of more than 10% all the limits are calculated again with the measured values. In this case it might be, that you have to compare all the measuring results again against the new limits. For this purpose we recommend to use a special test and evaluation software (like for the SYS61K system).

Class C

With **PF** and **Curr** you can enter the power factor and the fundamental current.

Class D

With **Pow** you can enter the active power.

EN61000-3-12

With **Rsce** you enter the R_{sce} value of the system.

6.2 Measuring ranges (Range)

The settings are the same like in 5.2, 'Measuring ranges (Range)'. Please note that the standards require a continuous measuring without gaps. For that reason the auto range function should be deactivated to prevent a range change, because this will cause a short measurement with invalid values.

6.3 Definition of measuring values

The following basic definitions are used:

- The harmonic order.
- The time of an integer number of the periods of the synchronisation signal

Voltage and current

true root mean square: $Utrms = \sqrt{\frac{1}{T} \int_{t=0}^{T} u(t)^2 dt}$ $Itrms = \sqrt{\frac{1}{T} \int_{t=0}^{T} i(t)^2 dt}$

DC component:
$$Udc = \frac{1}{T} \int_{t=0}^{T} u(t)dt \qquad Idc = \frac{1}{T} \int_{t=0}^{T} i(t)dt$$

AC component:
$$Uac = \sqrt{Utrms^2 - Udc^2}$$
 $Iac = \sqrt{Itrms^2 - Idc^2}$

crest factor:
$$Ucf = \frac{Upk}{Utrms} \qquad Icf = \frac{Ipk}{Itrms}$$

total harmonic distortion:
$$Uthd = \sqrt{\sum_{n=2}^{40} \left(\frac{U_n}{U_1}\right)^2}$$
 $Ithd = \sqrt{\sum_{n=2}^{40} \left(\frac{I_n}{I_1}\right)^2}$

The harmonic values 'I(n)' and 'U(n)' are calculated by using a DFT algorithm. The limit values 'Limit (n)' are calculated according to IEC61000-3-2.

Power

$$P = \left(\frac{1}{T} \int_{t=0}^{T} u(t)i(t)dt\right) - U(0) * I(0) if EN 61000 - 4 - 7:2008$$
 active power:

$$P = \frac{1}{T} \int_{t=0}^{T} u(t)i(t)dt \text{ in other cases}$$

reactive power:
$$Q = \sqrt{S^2 - P^2}$$

apparent power:
$$S = Utrms * Itrms$$

power factor:
$$\lambda = \frac{|P|}{S}$$

Impedances

apparent impedance:
$$Z = \frac{Utrms}{t_{trms}}$$

active impedance:
$$Rser = \frac{P}{Itrms^2}$$

reactive impedance:
$$Xser = \frac{Q}{Itrms^2}$$

6.4 Display of values

For the display of the values we have the same rules like in the normal measuring mode (see 5.4, 'Display of values').

6.4.1 Default

With *Default* you see the most important values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'.

6.4.2 Voltage

With *Voltage* you see the harmonic values of the measured voltage and in the second row the allowed limits in this voltage (if you see a single channel). A '!' between the two rows shows that the measuring value is bigger than the limit. In this menu you see always the evaluation of the actual measured window!

With the arrow keys or with the shuttle knob you can scroll through the list to see all harmonics.

In the top line you see the total trms value of the signal and the frequency of the synchronisation source.

Below the softkeys you see the result of the complete voltage judgement: a ' \checkmark ' indicates that all requirements of the standard are met. A ' \ast ' indicates a fault measuring result. This result is only the result of the actual measuring and not influenced by earlier measurements.

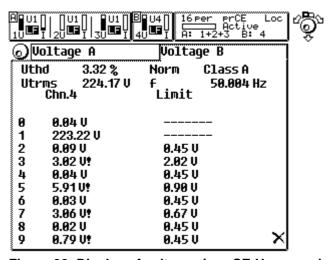


Figure 32: Display of voltages in prCE-Harm mode

6.4.3 Current

With *Current* you see the harmonic values of the measured current and in the second row the allowed limits in this current. A '!' between the two rows shows that the measuring value is bigger than the limit. A '?' between the two rows shows that the measuring value is bigger than 100%, but smaller than 150% of the limit (which is important for fluctuating harmonics!). This special evaluation is only valid for the harmonics of order 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17 and 19. The '?' indicates that the harmonic might be outside the standard if the '?' appears for more than 10% of a any 2.5min windows.

If the current is <5mA or <0.6% of I_{trms} there is no judgement of the current. For this reason '-----' is displayed for the limit.

With the arrow keys or with the shuttle knob you can scroll through the list to see all harmonics.

In the top line you see the total trms value of the signal and the frequency of the synchronisation source.

Below the softkeys you see the result of the complete current judgement: a ' \checkmark ' indicates that all requirements of the standard are met. A ' \ast ' indicates a fault measuring result. This result is only the result of the actual measuring and not influenced by earlier measurements.

Please note:

If only '?' appear and no '!' then the result will be ' \checkmark ', because this is only the short term result, which might be correct.

6.4.4 Power

With *Power* you see the most important power values of the instrument. For the handling please see the general description in chapter 5.4, 'Display of values'

6.4.5 Long time evaluation

In this menu you see the result of the long time evaluation. This is started with *Start* and can be cancelled with the *Stop* button. You see in the first row the order of the harmonics, followed by the maximum measured current.

The third row shows the evaluation for fluctuating harmonics. According to the standard it is allowed that some defined harmonics have values up to 1.5 times the limit for maximum 10% of a 2.5 minute window. The maximum percentage out of this window is displayed here. If the value is bigger than 10% you have a '!' behind this value.

In the fourth row you see if the current harmonics have violated any point of the standard anytime while the complete long time measuring. If you have here a '!' the device under test does not fulfil the standard!

In the last row you see if the test voltage has ever violated the harmonic limits.

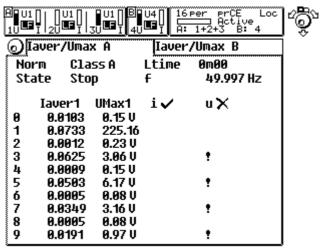


Figure 33: Long time evaluation of harmonics

Below the softkeys you see the total evaluation of the measurement. If any current harmonic has violated the standard at any time or the differences between control and measured values of power (class D) or of current and power factor (class C) were more then 10% (only for A14) you have 'Test I *'. If any voltage harmonic or the amplitude or the frequency have violated the standard you have 'Test U *'. The printing and logging of this menu is only possible in single mode (see 4.4.2.1, 'Interfaces for remote control') and with ASCII format.

6.4.6 Graphical display

With *Graph* you see the graphical display of the prCE measuring mode. Also in this menu we have the group concept. With the rotary knob you can select different tabs ('Spectrum A' and 'Spectrum B').

6.4.6.1 Spectrum A/B

The settings in group A and B are identical, so they are just described once.

The graphical display of the voltage, the current and the limits of the harmonics. On the left side you see for each graph signal value (yn), the limit value (yl) at cursor position, the scaling of the y-axis (dy) and the zoom of the y-axis (zm).

If you have logarithmic display, the dy value specifies the signal level at the top line. The lower lines have each a tenth of the upper ones.

Graph Here you can select one of the four possible display channels.

Signl Defines the signal for this display channel. Possible values are (for each channel):

- U The voltage harmonics
- LU The limits of the voltage harmonics and the voltage harmonics
- I The current harmonics
- LI The limits of the current harmonics and the current harmonics

For the displays with limits and harmonics you have always one thin bar with the limit, one thin bar with the measuring value and again one thin bar with the limit. So the value is covered by the limits.

You can imagine that the limits are displayed like a cup filled with water (which represents the values). If you have too much in the cup you have a problem.

Zoom Allows you to zoom the signals in y direction

Move Allows you to move the cursor to another position.

Split You can have one graph in one big screen or you can have several graphs in several screens (see pictures below)

Log changes between linear scaling (=off) and logarithmic scaling (=on) for the y-axis.

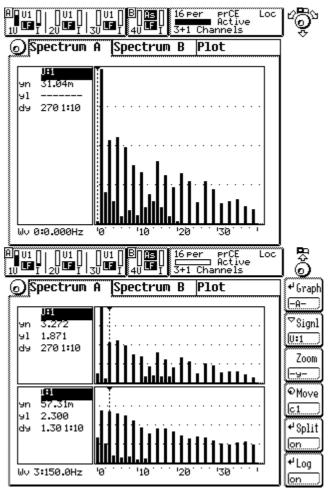


Figure 34: Graphical display of harmonics

6.4.6.2 Plot function

For the plot function we have the same rules like in the normal measuring mode (see '5.4.6.2, Plot function')

6.4.7 Custom menu

With *Custom* you see the custom menu. Here you can setup your own menus, calculate formulas and execute programs. See 4.4.3, 'Custom menu' and 4.4.4, 'Script/Formula editor'.

6.5 Storage of values

First you have to change to the menu you want to print out or to store and press *Print/Log* (exact handling see 11, 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out. In the menues with harmonic values you get all harmonics (not only the ones you see!).

6.6 Precompliance tests according EN61000-3-2

For tests according to this standard you first have to change the *Range* to 'Manual' mode. This is necessary because the test has to be done without any gaps.

Now you go to the *Measuring* menu, change the version with **EN** to '61000-3-2:1995' or '61000-3-2:2006' and select with **Eval** the class you want to test.

Now you can switch on the voltage. When the LMG is synchronised you can switch on the equipment under test (EUT).

If you want to make long time evaluations you can start them with *Start*.

7 CE-Flicker measuring mode (option L45-O4)

In the CE-Flicker measuring mode the LMG450 works as an high precision flicker analyser according to IEC61000-4-15. The number of settings has been reduced to the needed ones to avoid fail handling.

Note!

In this measuring mode the valid frequency range is from 45 to 65Hz!

7.1 Measuring configuration (Measuring)

The synchronisation is fixed to the voltage channel. With the rotary knob you can only select 'Globals' tab.

7.1.1 Globals tab

Here the general settings are done.

dMax This selects the dmax limit for the measuring. This value has to be taken out of the standard, depending on the measuring requirements.

EN Defines the standard which should be used:

3:95/-4-15	EN61000-3-3:1995 with EN61000-4-15:1998/A1:2003
3:08/-4-15	EN61000-3-3:2008 with EN61000-4-15:1998/A1:2003
3:08B2/-4-15	EN61000-3-3:2008 with EN61000-4-15:1998/A1:2003
	This one is especially for tests according annex B.2
-11:2000	EN61000-3-11:2000 with EN61000-4-15:1998/A1:2003

Syst This selects the system which is used for the measurement. There are four possible values:

230V/50Hz

230V/60Hz

120V/50Hz

120V/60Hz

The system is required for example for checking the correct frequency of the measuring setup.

Intv This is the interval time of the short term flicker measuring. The standard value is 10min.

Per. This is the number of short term periods for the long term measurement. The standard value is 12 periods for a long term time of 2 hours.

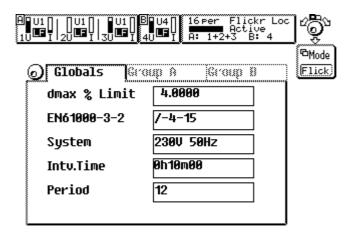


Figure 35: Measuring menu in CE-Flicker mode

7.1.2 Ztest/Zref tab

This is only available when EN61000-3-11 is selected.

With **Ztest** you have to enter your actual used test impedance in Ω .

With **Zref** you have to choose, if your reference impedance is $(0.24+j0.15)\Omega$ or $(0.4+j0.25)\Omega$.

The values for d_c, d_{max}, P_{st} and P_{lt} are recalculated as described in EN61000-3-11:2000

7.2 Measuring ranges (Range)

The settings are the same like in '5.2, Measuring ranges (Range)'. Please note that the standards require a continuous measuring without gaps. For that reason the auto range function should be deactivated to prevent a range change, because this will cause a short measurement with invalid values.

7.3 Definition of measuring values

The following basic definitions are used:

- The harmonic order.
- The time of an integer number of the periods of the synchronisation signal. The integer factor depends on the standard IEC61000-4-7. Actually 16 periods are measured.

Voltage and current

true root mean square:
$$Utrms = \sqrt{\frac{1}{T} \int_{t=0}^{T} u(t)^2 dt}$$

$$Itrms = \sqrt{\frac{1}{T} \int_{t=0}^{T} i(t)^2 dt}$$

total harmonic distortion:
$$Uthd = \sqrt{\sum_{n=2}^{40} \left(\frac{U_n}{U_1}\right)^2}$$

$$Ithd = \sqrt{\sum_{n=2}^{40} \left(\frac{I_n}{I_1}\right)^2}$$

The harmonic values 'I(n)' and 'U(n)' are calculated by using a DFT algorithm.

The values 'Pmom', 'Pst' and 'Plt' are calculated using a flickermeter according to EN61000-4-15. 'dc' and 'dmax' are calculated according to EN61000-3-3.

Power

active power:
$$P = \frac{1}{T} \int_{t=0}^{T} u(t)i(t)dt$$

reactive power:
$$Q = \sqrt{S^2 - P^2}$$

apparent power:
$$S = Utrms * Itrms$$

power factor:
$$\lambda = \frac{|P|}{S}$$

Impedances

apparent impedance:
$$Z = \frac{Utrms}{Itrms}$$

active impedance:
$$Rser = \frac{P}{Itrms^2}$$

reactive impedance:
$$Xser = \frac{Q}{Itrms^2}$$

7.4 Display of values

For the display of the values you can choose several menues.

7.4.1 Default

For the display of the values we have the same rules like in the normal measuring mode (see 5.4, 'Display of values')

7.4.2 Voltage

Here you see the TRMS value, the THD and the frequency.

7.4.3 Current

Here you see the TRMS value, the THD and the frequency.

7.4.4 Power

For the display of the values we have the same rules like in the normal measuring mode (see 5.4, 'Display of values')

7.4.5 Flicker (Int. Val)

In this menu you see the flicker values of the equipment under test (EUT). You see the short term flicker level P_{st} , the long term flicker level P_{lt} , the actual flicker level P_{mom} , the relative steady-state voltage change d_c , the maximum relative voltage change d_{max} , the remaining long term time, the remaining short term time and the state of the flicker measuring.

The state can be 'starting' (8s from pressing *START*), 'running' (while the long term interval) and 'stooped' after the measuring.

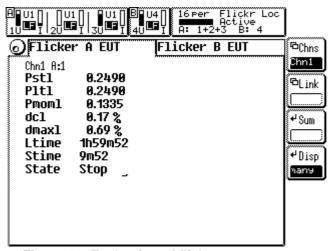


Figure 36: Evaluation of flicker measurement

d_{max} is measured over the long term time.

 d_c is the relative voltage change between two 'constant' voltages. Therefore it can have different values:

d_c=---- means that there was no constant voltage.

d_c=0.000% means that there was exactly one constant voltage.

Any other value is the biggest difference between two constant voltages.

P_{lt} is calculated at the end of the long term measuring. Until then it is displayed as '-----'.

7.4.6 Graphical display

Here just the plot function is available. The handling is the same like described in 5.4.6, 'Graphical display'

But there are some things to know concerning the displayed values:

In the other modes, all values are measured in the same time interval. In the flicker mode there are two main time intervals: 10ms and 320ms. Most values are updated every 320ms, but some come every 10ms: They are the momentary flicker level (ID is Pml) and the half wave trms value (ID is Uhwl). As said above, this values come every 10ms. The Pmoml and Utrms values are the average values of Pml and Uhwl. So you can see Pmoml and Pml in one graph as function 'A' and 'B'. Because Pmoml has a slower time base, it is plotted with 32 same values.

7.4.7 Custom menu

With *Custom* you see the custom menu. Here you can setup your own menus, calculate formulas and execute programs. See 4.4.3, 'Custom menu' and 4.4.4, 'Script/Formula editor'.

7.5 Storage of values

First you have to change to the menu you want to print out or to store and press *Print/Log* (exact handling see 11, 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out.

7.6 Tests according EN61000-3-3

For tests according to this standard you first have to change the *Range* to 'Manual' mode. This is necessary because the test has to be done without any gaps.

Switch on the <u>voltage</u> of the EUT. Start the flicker process with *Start*. After a delay of 8s the real measuring is started. Now you can switch on the EUT to get the different values. If you want to stop the measuring before the end of the long term time just press *Stop*.

Annex B.2

Usually the values d_c and d_{max} run for the whole observation period (Plt-time). To simplify tests according annex B.2 of EN61000-3-3:2008, you can choose, that these values are reset after each short term observation periode. To do this, please select the B2 item in measuring menu, softkey **EN**.

8 100 Harmonics measuring mode (option L45-O8)

In the 100 Harmonics measuring mode the LMG450 works as a high precision harmonic analyser. The difference to the prCE mode is, that 100 harmonics, the phase angles and the power harmonics are measured. The frequency range is much wider. There is no check against any limits.

8.1 Measuring configuration (Measuring)

When you came to this menu by pressing *Measure* you first have to choose **MODE** and then **HARM** to enter this mode. The well known setting menu with the three tabs ("Globals", "Group A" and "Group B") opens:

Globals Here you can set up the wiring in which is measured.

Group A/B For the settings in this menu refer 5.1.2 Group A/B tab. One additional setting is possible:

FDiv This defines a frequency divider for the basic wave. With a value of 1 the measured frequency is identical to the basic wave. With a value of 2 the fundamental has only the half frequency of the measured frequency (e.g. A 50Hz signal with **FDiv** = 4 is analysed on a 12.5Hz base. So you get 3 interharmonic between the 50Hz Harmonics)

Only with **FDIV** set to 1 you get the THD values of the signals

Pressing the rotary knob you will get to the main menu.

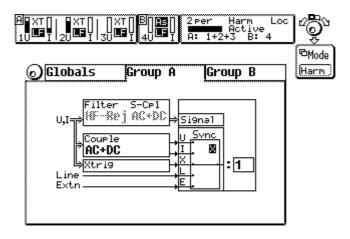


Figure 37: Measuring menu in Harm100 mode

8.2 Measuring ranges (Range)

The settings are the same like in 5.2 'Measuring ranges (Range)', but in this mode you have no autorange function.

8.3 Definition of measuring values

The following basic definitions are used:

- The harmonic order.
- The time of an integer number of the periods of the synchronisation signal. The integer factor depends on the frequency of the basic wave:

Basic wave range / Hz	Number of measured	Sample frequency	Automatically
	periods	divider	selected filter
640-1280	16	1	HF-Rejection
320-640	8	1	HF-Rejection
160-320	4	1	HF-Rejection
80-160	2	1	18kHz
40-80	2	2	6kHz
20-40	2	4	2.8kHz
10-20	2	8	1.4kHz
5-10	2	16	700Hz
2.5-5	2	32	350Hz
1.25-2.5	2	64	175Hz
0.625-1.25	2	128	87.5Hz

The 'sample frequency divider' defines, how the sampling frequency of about 50kHz is divided for this measuring.

Voltage and current

true root mean square:
$$Utrms = \sqrt{\frac{1}{T}} \int_{t=0}^{T} u(t)^2 dt \quad Itrms = \sqrt{\frac{1}{T}} \int_{t=0}^{T} i(t)^2 dt$$

total harmonic distortion:
$$Uthd = \sqrt{\sum_{n=2}^{99} \left(\frac{U_n}{U_1}\right)^2}$$
 $Ithd = \sqrt{\sum_{n=2}^{99} \left(\frac{I_n}{I_1}\right)^2}$

Only with **FDIV** set to 1 you get the THD values of the signals.

The harmonic components are calculated to meet the following:

$$u(t) = \sum_{n=0}^{99} \sqrt{2} U_n \sin(n\omega t + \varphi_{un}) \qquad i(t) = \sum_{n=0}^{99} \sqrt{2} I_n \sin(n\omega t + \varphi_{in})$$

The harmonic values 'I(n)', 'U(n)' and 'Phase(n)' are calculated by using a DFT algorithm. With this values also the values of 'P(n)', 'S(n)' and 'Q(n)' are calculated. This 'Q(n)' is only the reactive power, caused by a phase shift of a voltage and current component with the same frequency. Therefore it is in this mode possible to calculate also the reactive power which is caused by voltage and current components with different frequencies. This value is called D:

$$D = \sqrt{S^2 - P^2 - Qshift^2}$$
 with $Qshift = \sum_{n=0}^{99} Q(n)$, P and S see below.

Power

active power: $P = \frac{1}{T} \int_{t=0}^{T} u(t)i(t)dt$

reactive power: $Q = \sqrt{S^2 - P^2}$

apparent power: S = Utrms * Itrms

power factor: $\lambda = \frac{|P|}{S}$

Impedances

apparent impedance: $Z = \frac{Utrms}{Itrms}$

active impedance: $Rser = \frac{P}{Itrms^2}$

reactive impedance: $Xser = \frac{Q}{Itrme^2}$

8.4 Display of values

For the display of the values you can choose several menues.

Harmonic values (amplitude, phase, frequency, ...) can just be displayed constant in steady state condition due to the nature of FFT. While signal changes (frequency and/or amplitude) you will get unexpected signals (they are not wrong, but due to the special calculation method 'FFT' they might look different than you expect).

The influence of the HF-Rejection filter is compensated for the amplitudes of the harmonics. The values for U, I and P are <u>not</u> recalculated from the harmonics, but are calculated from the sampling values to get for example interharmonics and components with higher frequencies which are not captured by the harmonics. So it is not possible to compensate the influence of

the filters for this values! For the same reason this values can also be much bigger than the values which can be derived from the harmonics (depending on the signal).

8.4.1 Default

With *Default* you see the most important values of the instrument. The available settings are described in "5.4 Display of values".

8.4.2 Voltage

With *Voltage* you see the harmonic values of the measured voltage and in the second row the phase of the harmonic component.

With the softkey **Chns** you can choose the channel.

With the softkey **Href** you can select the reference signal (voltage, current or none). The fundamental of this signal is always set to 0° . When selected 'none', the time window is the reference.

With the softkey **Link** the harmonics of the linked values will be shown.

Using the rotary knob you can scroll through the list to see all harmonics.

8.4.3 Current

With *Current* you see the harmonic values of the measured current and in the second row the phase of the harmonic component.

With the softkey **Chns** you can choose the channel.

With the softkey **Href** you can select the reference signal (voltage, current or none). The fundamental of this signal is always set to 0° . When selected 'none', the time window is the reference.

With the softkey **Link** the harmonics of the linked values will be shown.

Using the rotary knob you can scroll through the list to see all harmonics.

8.4.4 Power

With *Power* you see the harmonic values of the measured powers. The synchronisation frequency is shown in the first row, displaying all channels.

With the softkey **Chns** you can choose the channel.

With **List** you can choose several lists with the different combinations of the different powers.

Using the rotary knob you can scroll through the list to see all harmonics.

8.4.5 Graphical display

Here just the plot function, the spectrum and the vector diagram is available. The handling is the same like described in 5.4.6, 'Graphical display' and 6.4.6.1, 'Spectrum A/B'.

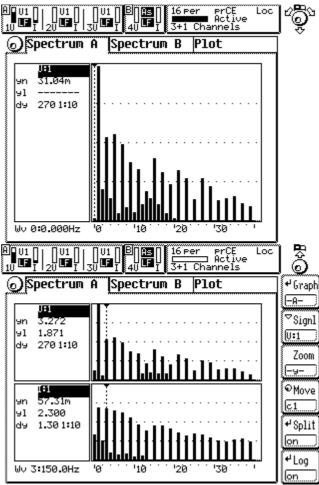


Figure 38: Graphical display of harmonics

8.4.6 Custom menu

With *Custom* you see the custom menu. Here you can setup your own menus, calculate formulas and execute programs. See 4.4.3, 'Custom menu' and 4.4.4, 'Script/Formula editor'.

8.5 Storage of values

First you have to change to the menu you want to print out or to store and press *Print/Log* (exact handling see 11, 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out. In the menues with harmonic values you get all harmonics (not only the ones you see!).

9 Transient mode (option L45-O5)

In the transient measuring mode the LMG450 works as a transient recorder. You can define special events. If they occur the measuring is stopped and you can analyse the signal.

9.1 Measuring configuration (Measuring)

When you came to this menu by pressing *Measure* you first have to choose **MODE** and then **TRANS** to enter this mode. The well known setting menu with the three tabs ("Globals", "Group A" and "Group B") opens:

9.1.1 Globals tab

Here you can set up the wiring in which is measured and general conditions which are equal for all groups.

By pressing the rotary knob, you can setup the following values:

- **TDur** This is the minimum duration of the event. If you for example set this value to 5ms and check for an over limit, the signal has to be over the limit for 5ms until the event is generated.
- The This is the recording time. The signal is recorded for this time to the memory. If you have more memory, it might be recorded for a longer time.
 Please note: If your memory is too small and/or you want to record too much signals the recording rate might be reduced. This has no influence on the sampling rate or on the event detection.
- **PreTr** This is the pretrigger duration in %. If you for example have a record time of 200ms and 50% pretrigger you will get at minimum 100ms before the event and exact 100ms after the event.
- Wire Here you can setup, with which wiring you want to measure. Please see chapter 2.4,'The group concept' for further details.If a linked wiring is used, only the linked channels can generate a trigger event.

9.1.2 GroupA/B tab

The settings in all groups are identical, so they are just described once!

General

- The settings of a group are valid for all channels of the group.
- The channels of a group are OR combined. If at least one channel is triggered, the complete group is triggered.
- The groups are also OR combined. If one group is triggered, the other one is also triggered.

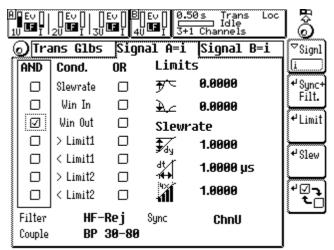


Figure 39 Measuring menu in transient mode

Signl This defines which signal should be watched for the transient event. Following settings are possible: i, u, p.

Sync+Filt Here you reach a sub-menu in which you can setup some values:

Sync Selects the signal which is used for synchronisation. There are four possible settings:

ChnU The voltage signal is used

ChnI The current signal is used

Line The line signal is used

Extn The signal at the external synchronisation jack is used.

Coupl Selects how the voltage or current signal is coupled to the following trigger stage. This setting has **no** influence to the measured signals! Please refer to 5.1.2, 'Group A/B tab'.

Filt Here you can select if the filters in the signal path of voltage and current are active or not. This filters are only in the signal way and don't influence the synchronisation. For the possible settings see 5.1.2, 'Group A/B tab'

You have to leave this menu by pressing *Enter* or *ESC*. The settings for **Coupl** and **Sync** you did in this menu are not used for the transient search itself but for continuously measuring the TRMS and peak values of voltage and current. This values are used to update the over and under range display in the status line.

Limit

Here you can setup the limits for the events. The instantaneous value of the signal to be watched is checked against the limit if it is bigger (or smaller) an event is generated. If a function needs two limits (e.g. Win In) **Lim1** is the upper limit and **Lim2** the lower limit.

Slewr

Here you can setup the maximum allowed slewrate of the signal. For this you have 3 possible settings:

dSig This is the required signal change in the time interval **dt**.

dt This is the time interval.

overx This is the width of the slewrate watch window in number of sample values.

For example you have a signal with a typical rise time of 3.5V in 450 μ s. In this case you have to enter 3.5 with **dSig** and 450 μ with **dt**. Herewith you have defined the steep of the signal: 7.777V/ms or 7.777mV/ μ s. With a sample interval of about 20 μ s (20 μ s *7.777mV/ μ s = 155.54mV) this is only about 3 bit (in 600V range; 1 bit = 1600Vpeak/32768 = 48.8mV) of the converter resolution. That means, if the difference between two sample values is bigger than 3 bit you would get an event. But from several sources you have a small noise on the signal. This would cause fail events. To prevent this you can use the parameter **overx**. With it you can define, that the slewrate is not defined over one sample period but over up to 15. If you for example choose 15 (15*20 μ s*7.777mV/ μ s=2.333V), the signal has to change 48 bit in this example! So you can use **overx** to suppress noise effects.

While you are in the **Set** mode you can use the rotary knob to define the trigger condition. Move to the desired position and press *Enter* to mark/unmark the condition. In the left column you can setup the AND condition. Only if all of this marked events happen at the same time the result of the AND condition will be true. In the right column you can setup the OR condition. If one or more of the marked events happen <u>or</u> the result of the AND condition is true you will get an event.

An event is generated depending on the event type if:

Slewrate the slew rate of the signal is bigger than defined by the **Slewr** menu.

Win In the signal is <Limit1 and >Limit2
Win Out the signal is >Limit1 or <Limit2

>Limit1 the signal is >Limit1 <Limit1 the signal is <Limit1 >Limit2 the signal is >Limit2 <Limit2 the signal is <Limit2 If you enter the transient mode the instrument is always in the 'Idle' state (see status line). To start a transient search press *Start*. In the status line changes to 'Start'. This state lasts until the pretrigger time is over. While this time no events are detected. Now the status changes to 'Search'. Now an event would be detected. To end a search press the *Stop* key. In this case an event is simulated and you can check if for example your trigger time definitions are okay. Pressing the *Stop* key is same like generating an event. The instrument changes to 'PostTr' state to record the posttrigger values. If this has finished, the last status will be 'Finish'. Now you can watch the values and start a new search.

If you are searching a transient, you see the record time in the status line. The bar below blinks.

9.2 Measuring ranges (Range)

The settings are the same like in 5.2, 'Measuring ranges (Range)'. Only manual range is possible.

9.3 Display of values

For the display of the values you can choose only one menu.

9.3.1 Graphical display

The settings are the same like in 5.4.6, 'Graphical display', but there is only the scope function in the transient mode.

The second exception is the **Min.Div.** softkey on the 'Extended' tab. It is similar to the **Cycls** softkey in the normal mode (see 5.4.6.4, 'Extended'). By it you can define, that the sample rate should be divided at least by this number. So you can get a longer time duration onto one screen of the scope.

9.4 Storage of values

First you have to change to the menu you want to print out or to store and press *Print/Log* (exact handling see 11, 'Logging of values to drives, printer and interfaces'). All the values you see in this menu are printed out.

10 Interfaces (IEEE option L45-O1)

With exception of the IEEE interface all interfaces could also be used for data logging (see 11, 'Logging of values to drives, printer and interfaces'). To remote control the LMG please reserve first the wished interface for this job (see 4.4.2.1, 'Interfaces for remote control').

This chapter includes all commands and a short general syntax description. A much more detailed syntax description with a lot of examples and further programming explanations can be found in our *Programmer's Guide* on the CD which is included in the printed version of this manual. If this is missing or you have just a PDF version of this manual you can request the *Programmer's Guide* by email from 'sales@zes.com'.

10.1 Short syntax description

There are two implemented languages: SCPI and SHORT. When switching on the instrument SCPI is selected. To change to SHORT you have to send:

SYST:LANG SHORT

For further differences between SCPI and SHORT command set see also 10.2.4, ':FETCh and :READ commands'

The general syntax for both command sets is identical. The most important syntax rules are:

- A message to the instrument has to be terminated with an EOS character.
- brackets [..] are showing optional part of commands. There is no need to send them to the device, but you can do it, if you need this function. The brackets are just informative and should not be sent.
- The number of the measuring channel (further on called 'suffix') follows directly (without any space) after the identifier. If you don't specify one, '1' is assumed.
- If you request a value you have to add a '?' directly behind the suffix (or the identifier, if no suffix is specified), without any space.
- All parameters following the commands have to be separated from the command with at least one space character.
- The group number is usually an optional parameter in the format [,<NRi>]. If you don't specify it, group A (=0) is assumed as default value.
- '/qonly/' indicates, that this is a value which can only be demanded, but not set. Do not send the '/qonly/' string to the device, it is just written in this manual to explain the command. For example you can't send a measuring value.

- '/nquery/' indicates that this value can only be set, and not demanded. Do not send the '/nquery/' string to the device, it is just written in this manual to explain the command. For example you can't request a trigger command.
- All commands without '/qonly/' and '/nquery/' can be read and set.
- <NRf> are float numbers
- <NRi> are integer numbers
- <stands for <(<NRf>:<NRf>)>. With this construct you can request several values which are stored in an array, for example harmonic values. To get the 3rd to 11th harmonic of the voltage of the second measuring channel you have to write in SHORT command set: HUAM2? (3:11)

For the complete syntax rules please take a look at the **Programmer's Guide!**

Examples showing the syntax

Equivalent SCPI commands for reading the TRMS value of the 1st measuring channel:

:FETCh:CURRent:TRMS?

:FETC:CURR:TRMS?

:FETC:CURR:TRMS1?

As SHORT command it would be

ITRMS? or ITRMS1?

Please note that there is no space before the '1' and no space before the '?'!

Command for reading the harmonic voltages from the 2nd to the 4th harmonic (3 values): :FETC:HARM:VOLT:AMPL? (2:4)

Please notice that there is <u>at least one</u> space between the question mark and the parameters!

Command for setting the 250V range:

:SENS:VOLT:RANG 250

Please notice that there is at least one space before the parameter 250!

Command for setting the 250V range in the 3rd channel:

:SENS:VOLT:RANG3 250

Please notice that there is <u>no</u> space before the suffix and <u>at least one</u> space before the 250!

Commands for setting and reading a filter in group B (short language):

FILT 5,1 FILT? 1

For group A you can write:

FILT 5,0 or FILT 5 FILT? 0 or FILT?

For more examples please take a look at the **Programmer's Guide!**

10.2 Commands

Here you find all commands the instrument can handle. The commands are ordered like in the SCPI tree structure. The description is always the same:

SCPI: The SCPI syntax of the command SHORT: The SHORT syntax of the command

The ID for script editor and similar ID: Mode: The valid measuring modes Suffix: Type: The data type The valid suffix range Value: The value range List: The valid list range Unit: The physical unit The valid group range Group:

An 'n/a' means 'not applicable'. If you for example see an 'n/a' in the 'Value:' field, then this command has no value at all. Or it is a float number with all valid codes according IEEE754.

The titles of the useable commands are in a box. There you find from left to right: SCPI command, SHORT command and the ID if existing.

Please see also 10.1, 'Short syntax description'.

For all this commands there is a separated index. See chapter 17, 'Interface command index'.

10.2.1 IEEE488.2 common commands

10.2.1.	1 *CLS	*CLS	*CLS	
	*CLS/nquery/ *CLS/nquery/			
ID: Type: Value: Unit:	n/a n/a n/a n/a	Mode: all Suffix: n/a List: n/a Group: n/a	Suffix: List:	

Clears the event registers of all status data structures in a device and the error/event queue.

10.2.1.2	2 *ESE	*ESE
	*ESE <nri> *ESE <nri></nri></nri>	
ID: Type: Value: Unit:	n/a long int 0255 n/a	Mode: n/a Suffix: n/a List: n/a Group: n/a

Used to set up or read out the **Event Status Enable Register**.

10.2.1.3 *ESR? *ESR?

SCPI: *ESR? /qonly/ SHORT: *ESR? /qonly/

ID:n/aMode:allType:long intSuffix:n/aValue:0...255List:n/aUnit:n/aGroup:n/a

Reads out and clears the Event Status Register.

10.2.1.4 *IDN? *IDN?

SCPI: *IDN? /qonly/ SHORT: *IDN? /qonly/

ID: n/a Mode: all Type: Suffix: n/a n/a Value: n/a n/a List: Unit: n/a Group: n/a

Reads out the <u>identification</u> of the device. There are 4 fields separated by commas:

Field 1 Manufacturer

Field 2 Model

Field 3 Serial number

Field 4 Firmware level

10.2.1.5 *IST? *IST?

SCPI: *IST? /qonly/ SHORT: *IST? /qonly/

ID: n/a Mode: all Type: long int Suffix: n/a Value: 0, 1 List: n/a Unit: n/a Group: n/a

Individual Status Query. This returns the status of the 'ist' local message in the device.

10.2.1.6 *OPC *OPC

SCPI: *OPC/nquery/ SHORT: *OPC/nquery/

ID: n/a Mode: all Type: n/a Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Causes the device to set the <u>operation complete</u> bit in the Standard Event Status Register, when all pending selected device operations have been finished.

10.2.1.7 *OPC? *OPC? SCPI: *OPC? /gonly/ SHORT: *OPC?/qonly/ ID: n/a Mode: all Type: char Suffix: n/a Value: '1' List: n/a

Causes the device to place a "1" (=31h) in the output queue, when all pending selected device actions have been finished (=operation complete). This is independent from the output format!

Group:

n/a

10.2.1.8	8 *PRE	*PRE	
	*PRE <nri> *PRE <nri></nri></nri>		
ID: Type: Value: Unit:	n/a long int 065535 n/a	Mode: Suffix: List: Group:	all n/a n/a n/a

Used to set up or read out the Parallel Poll Enable Register

10.2.1.	9 *RST	*RST
	*RST/nquery/ *RST/nquery/	
ID: Type: Value: Unit:	n/a n/a n/a n/a	Mode: all Suffix: n/a List: n/a Group: n/a

This performs a <u>device reset</u>. A lot of internal settings (like measuring mode, ranges, ...) are set to their default values. In this chapters the default value is indicated by '[*RST Default value]'. All time dependent measurements are stopped (energy, flicker, harmonics).

The interface and it's parameters are <u>not</u> reset! If you want to reset it, please use a BREAK with RS232 interface or a 'device clear' with IEEE interface.

Hint

Unit:

n/a

The execution of this command can take up to several seconds. The LMG works internally with a watchdog protection. To prevent that the watchdog becomes active, the '*RST' command should be send as the only command in a message. Just the '*OPC?' can be added to get a feedback, if the command has finished ('*RST;*OPC?'). In this case wait until the '1' returns before sending the next commands!

10.2.1.10 *SRE *SRE

SCPI: *SRE <NRi>SHORT: *SRE <NRi>

Mode: ID: n/a all Type: long int Suffix: n/a Value: 0...255 List: n/a Unit: Group: n/a n/a

Sets or queries the Service Request Enable Register

10.2.1.11 *STB? *STB?

SCPI: *STB? /qonly/ SHORT: *STB? /qonly/

Mode: ID: n/a all Type: long int Suffix: n/a Value: 0...255 List: n/a Unit: n/a Group: n/a

Queries the Status Byte Register.

10.2.1.12 *TRG *TRG

SCPI: *TRG/nquery/ SHORT: *TRG/nquery/

ID: n/a Mode: all Type: Suffix: n/a n/a Value: n/a List: n/a Unit: n/a Group: n/a

<u>Triggers</u> the same action that happens when programmer sends DT1 via IEEE488.1 interface or '&TRG<cr><lf>' via RS232 interface. Actually nothing is performed.

10.2.1.13 *TST? *TST?

SCPI: *TST? /qonly/ <NRi>SHORT: *TST?/qonly/ <NRi>

ID: n/a Mode: all Type: long int Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Initiates a <u>self test</u>. Returns a value depending on <NRi>. This command should only be used by ZES and not by customers.

10.2.1.14 *WAI *WAI

SCPI: *WAI/nquery/ SHORT: *WAI/nquery/

ID: n/a Mode: all Type: n/a Suffix: n/a Value: List: n/a n/a Unit: n/a Group: n/a

<u>Waits</u> until all pending selected device operations have been finished. Note: The instrument handles commands in a queue, so when executing the *WAI all previous commands have been executed. Thus the instrument is doing nothing when receiving the *WAI command. It has been implemented to follow the standard IEEE488.2.

10.2.2 :CALCulate commands

Here you find commands which influence the script editor (formulas) or limits.

:CALCulate → :ENVironment :DISPlay :FORMula :FETCh :LIMit :FORMat :INITiate :INPut :INSTrument :MEMory :READ :SENSe :SOURce :STATus :SYSTem :TRIGger

10.2.2.1.1 ENVironment ENV Env

SCPI: :CALCulate:ENVironment <NRf>[,<NRi>]

SHORT: ENV <NRf>[,<NRi>]

ID:EnvMode:allType:floatSuffix:n/aValue:n/aList:n/a

Unit: n/a Group: optional [,<NRi>]: 0=Env0, ...,7=Env7

Sets or queries an environment variable.

10.2.2.2 :FORMula

:CALCulate → :ENVironment
:DISPlay :FORMula → [:DEFine]
:FETCh :LIMit
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory

:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger

10.2.2.2.1 [:DEFine] FORM

SCPI: :CALCulate:FORMula[:DEFine] <string program data>

SHORT: FORM<string program data>

ID:n/aMode:allType:stringSuffix:n/aValue:n/aList:n/aUnit:n/aGroup:n/a

Sets or reads the script of the <u>script editor</u>. There is no *RST default value.

For example 'FORM',,a=1;"<lf>' sets the internal variable a to 1.

10.2.2.3 :LIMit:

:ENVironment :CALCulate → :DISPlay :FORMula :LIMit :FETCh :CLASs :FORMat :DMAX :INITiate :FCURrent :INPut :PFACtor :POWer :INSTrument :SYSTem :MEMory :READ :VERSion :SENSe :SOURce :STATus :SYSTem :TRIGger

10.2.2.3.1 :CLASs EVAL

SCPI: :CALCulate:LIMit:CLASs <NRi>

SHORT: EVAL <NRi>

ID: n/a Mode: prCE Type: Suffix: n/a long int Value: 0...6, 10...12 List: n/a Group: Unit: n/a n/a

Sets the <u>evaluation of the harmonics</u> in the prCE mode:

0: Class A (EN61000-3-2) [*RST default value]

1: Class B (EN61000-3-2)

2: Class C-2 (EN61000-3-2)

3: Class D (EN61000-3-2)

4: Class C-3 (EN61000-3-2)

5: Class C-W (EN61000-3-2)

6: Class C-1 (EN61000-3-2)

10: Table 2 (EN61000-3-12)

11: Table 3 (EN61000-3-12)

12: Table 4 (EN61000-3-12)

10.2.2.3.2 :DMAX FLDL

SCPI: :CALCulate:LIMit:DMAX <NRf>

SHORT: FLDL <NRf>

ID: n/a Mode: Flicker Suffix: Type: float n/a Value: in % List: n/a Unit: Group: n/a n/a

Sets the <u>allowed limit for d_{max} for the device under test according to the standard</u> in the flicker mode.

10.2.2.3.3 :FCURrent ISO

SCPI: :CALCulate:LIMit:FCURrent <NRf>

SHORT: ISO <NRf>

Sets or reads the <u>fundamental current</u> for the EN61000-3-2:2006 <u>limit calculation</u> in the CE mode.

10.2.2.3.4 :FVERsion FNRM

SCPI: :CALCulate:LIMit:FVERsion <NRi>

SHORT: FNRM <NRi>

ID: n/a Mode: Flicker Type: long int Suffix: n/a Value: 0...3 List: n/a Unit: n/a Group: n/a

Sets or reads the <u>edition</u> of the <u>flicker standard</u>:

0: EN61000-3-3:1995 [*RST default value]

1: EN61000-3-3:2008

2: EN61000-3-3:2008 Annex B.2

3: EN61000-3-11:2000

10.2.2.3.5 :PFACtor PFSO

SCPI: :CALCulate:LIMit:PFACtor <NRf>

SHORT: PFSO <NRf>

 ID:
 n/a
 Mode:
 prCE

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a, [*RST default value] = 1.0
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Sets or reads the <u>power factor</u> for the EN61000-3-2:2006 <u>limit calculation</u> in the CE mode.

10.2.2.3.6 :POWer PSO

SCPI: :CALCulate:LIMit:POWer <NRf>

SHORT: PSO <NRf>

 ID:
 n/a
 Mode:
 prCE

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a, [*RST default value] = 1.0
 List:
 n/a

 Unit:
 W
 Group:
 n/a

Sets or reads the <u>power</u> for the EN61000-3-2:2006 <u>limit calculation</u> in the CE mode.

10.2.2.3.7 :RSCE RSCE

SCPI: :CALCulate:LIMit:RSCE <NRf>

SHORT: RSCE <NRf>

ID: n/a Mode: prCE Type: float Suffix: n/a 33...10000, [*RST default value] = 33 Value: n/a List: Unit: Group: n/a n/a

Sets or reads the \underline{R}_{sce} for the EN61000-3-12:2005 <u>limit calculation</u> in the prCE mode.

10.2.2.3.8 :SYSTem SYSD

SCPI: :CALCulate:LIMit:SYSTem <NRi>

SHORT: SYSD <NRi>

prCE ID: n/a Mode: long int Suffix: n/a Type: Value: 0...3 List: n/a Unit: n/a Group: n/a

Sets or reads the <u>supply system</u> for the CE harmonics and flicker:

0: 230V/50Hz [*RST default value]

1: 230V/60Hz

2: 120V/50Hz

3: 120V/60Hz

4: 220V/50Hz

5: 220V/60Hz 6: 240V/50Hz

7: 240V/60Hz

10.2.2.3.9 :VERSion EDIT

SCPI: :CALCulate:LIMit:VERSion <NRi>

SHORT: EDIT <NRi>

ID: n/a Mode: prCE Type: long int Suffix: n/a Value: 0...4 List: n/a Unit: n/a Group: n/a

Sets or reads the <u>edition</u> of the <u>harmonic standard</u>:

0: EN61000-3-2:1995 and EN61000-4-7:1993 [*RST default value]

1: EN61000-3-2:1995 and EN61000-4-7:2008

2: EN61000-3-2:2006 and EN61000-4-7:1993

3: EN61000-3-2:2006 and EN61000-4-7:2008

4: EN61000-3-12:2005 and EN61000-4-7:2008

10.2.2.3.10 :ZREF ZREF

SCPI: :CALCulate:LIMit:ZREF <NRf>

SHORT: ZREF <NRf>

ID: n/a Flicker Mode: Type: Suffix: int n/a Value: 0, 1 List: n/a Unit: n/a Group: n/a

Sets or reads the \underline{Z}_{ref} for the EN61000-3-11:2000 <u>limit calculation</u>.

0: $(0.24+j0.15)\Omega$ [*RST default value]

1: $(0.40+j0.25)\Omega$

10.2.2.3.11 :ZTESt ZTST

SCPI: :CALCulate:LIMit:ZTESt <NRf>

SHORT: ZTST <NRf>

Sets or reads the $\underline{Z_{test}}$ for the EN61000-3-11:2000 <u>limit calculation</u>.

10.2.3 :DISPlay commands

:CALCulate	
:DISPlay →	:CONTrast
:FETCh	:RESet
:FORMat	
:INITiate	
:INPut	
:INSTrument	
:MEMory	
:READ	
:SENSe	
:SOURce	
:STATus	
:SYSTem	
:TRIGger	

10.2.3.1 :CONTrast DISC

SCPI: :DISPlay:CONTrast <NRf>

SHORT: DISC <NRf>

 ID:
 n/a
 Mode:
 all

 Type:
 float
 Suffix:
 n/a

 Value:
 0...100 in %, [*RST default value] = 65
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Sets or reads the <u>contrast</u> of the display.

10.2.3.2 :RESet DISR

SCPI: :DISPlay:RESet

SHORT: DISR

 ID:
 n/a
 Mode:
 all

 Type:
 n/a
 Suffix:
 n/a

 Value:
 n/a
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Resets the display to the default values. (e.g. small fonts...).

10.2.4 :FETCh and :READ commands

These both commands are used to get measuring values from the instrument. With :FETCh you get the values which are actually in the copied buffer for the interface. With :READ there are internally two commands executed: :INITiate:IMMediate and :FETCh (see also 10.2.6.3, ':IMMediate INIM' for further details).

If you request the same value twice with two :READ commands (e.g.

:READ:DC?;:READ:DC?) you get two different values of two different cycles. This can cause problems for example with following request:

:READ:VOLTAGE:DC?;;READ:CURRENT:DC?

The two values you get for Udc and Idc are measured in different cycles!

If you request the same value twice with two :FETCh commands you get the same values of the same cycle. For example :FETC:DC?;:FETC:DC? would not make any sense, because you will get the same value.

A usual request looks like this:

:READ:VOLTAGE:DC?;:FETC:CURRENT:DC?

In this case the instrument finishes the actual cycle, copies the values for the interface and returns the two requested values. This two values are measured in the same cycle!

The SHORT commands perform equal to the :FETCh commands (which means there is no INIM performed!). So if you want to perform the last example with SHORT commands you have to enter

INIM;UDC?;IDC?

10.2.4.1 [:SCALar]

10.2.4.1.1 :CURRent

:CALCulate :DISPlay :FETCh →	[:SCALar] →	:CURRent →	:AC
:FORMat		:CYCLe	:CFACtor
:INITiate		:DINPut	:DC
:INPut		:ENERgy	:FFACtor
:INSTrument		:FLICker	:INRush
:MEMory		:FREQuency	:MAXPk
:READ →		:HARMonics	:MINPk
:SENSe		:POWer	:PPEak
:SOURce		:RESistance	:RECTify
:STATus		:SSYStem	:RUSed
:SYSTem		:VARiable	[:TRMS]
:TRIGger		[:VOLTage]	

10.2.4.1.1.1 :AC? IAC? lac

SCPI: :FETCh[:SCALar]:CURRent:AC? /qonly/ | :READ[:SCALar]:CURRent:AC? /qonly/

SHORT: IAC? /qonly/

ID: lac Mode: Normal, prCE

Type: float Suffix: 1...12
Value: n/a List: n/a
Unit: A Group: n/a

Reads the <u>AC</u> value of the <u>current</u>.

10.2.4.1.1.2 :CFACtor? ICF? Icf

SCPI: :FETCh[:SCALar]:CURRent:CFACtor? /qonly/ | :READ[:SCALar]:CURRent:CFACtor?

/gonly/

SHORT: ICF?/qonly/

ID: Icf Mode: Normal

Type: float Suffix: 1...12
Value: n/a List: n/a
Unit: n/a Group: n/a

Reads the crest factor of the current.

10.2.4.1.1.3 :DC? IDC? Idc

SCPI: :FETCh[:SCALar]:CURRent:DC? /qonly/ | :READ[:SCALar]:CURRent:DC? /qonly/

SHORT: IDC? /qonly/

ID: Idc Mode: Normal, prCE

Type: float Suffix: 1...12
Value: n/a List: n/a
Unit: A Group: n/a

Reads the <u>DC</u> value of the <u>current</u>.

10.2.4.1.1.4 :FFACtor? IFF? Iff

SCPI: :FETCh[:SCALar]:CURRent:FFACtor? /qonly/ | :READ[:SCALar]:CURRent:FFACtor? /qonly/

SHORT: IFF? /qonly/

ID: Iff Mode: Normal Type: float Suffix: 1...12 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the form factor of the current.

10.2.4.1.1.5 :FSCale? FSI?

SCPI: :FETCh[:SCALar]:CURRent:FSCale? /qonly/ | :READ[:SCALar]:CURRent:FSCale? /qonly/

SHORT: FSI? /qonly/

ID: Mode: ΑII n/a 1...12 Type: float Suffix: Value: List: n/a n/a Unit: Α Group: n/a

Reads the <u>full scale</u> value of the <u>current</u>.

10.2.4.1.1.6 :INRush? IINR? Iinr

SCPI: :FETCh[:SCALar]:CURRent:INRush? /qonly/ | :READ[:SCALar]:CURRent:INRush? /qonly/

SHORT: IINR? /qonly/

ID: linr Mode: Normal Type: float Suffix: 1...12 Value: n/a List: n/a Unit: Α Group: n/a

Reads the value of the <u>inrush current</u>. For reset see 10.2.14.2

10.2.4.1.1.7 :MAXPk? IMAX?

lpkp

SCPI: :FETCh[:SCALar]:CURRent:MAXPk? /qonly/ | :READ[:SCALar]:CURRent:MAXPk? /qonly/

SHORT: IMAX? /qonly/

Mode: Normal ID: **Ipkp** Type: float Suffix: 1...12 Value: n/a List: n/a Unit: Α Group: n/a

Reads the biggest sample value of the current.

10.2.4.1.1.8 :MINPk?

IMIN?

lpkn

SCPI: :FETCh[:SCALar]:CURRent:MINPk? /qonly/ | :READ[:SCALar]:CURRent:MINPk? /qonly/

SHORT: IMIN? /qonly/

ID: **Ipkn** Mode: Normal Type: float Suffix: 1...12 Value: n/a List: n/a Unit: Α Group: n/a

Reads the smallest sample value of the current.

10.2.4.1.1.9 :PHASe?

IPHI?

Iphi

SCPI: :FETCh[:SCALar]:CURRent:PHASe? /qonly/ | :READ[:SCALar]:CURRent:MINPk? /qonly/

SHORT: IPHI? /qonly/

ID:n/aMode:NormalType:floatSuffix:1...4Value:n/aList:n/aUnit:°Group:n/a

Reads the <u>phase angle</u> of the <u>current</u> like displayed in the Fresnel diagram.

10.2.4.1.1.10 :PPEak?

IPP?

lpp

SCPI: :FETCh[:SCALar]:CURRent:PPEak? /qonly/ | :READ[:SCALar]:CURRent:PPEak? /qonly/

SHORT: IPP? /qonly/

ID: **Ipp** Mode: Normal Type: float Suffix: 1...12 Value: n/a List: n/a Unit: n/a Α Group:

Reads the <u>peak peak</u> value of the current.

10.2.4.1.1.11 :RECTify?

IREC?

Irect

SCPI: :FETCh[:SCALar]:CURRent:RECTify? /qonly/ | :READ[:SCALar]:CURRent:RECTify? /qonly/

SHORT: IREC? /qonly/

Ovrl

 ID:
 Irect
 Mode:
 Normal

 Type:
 float
 Suffix:
 1...12

 Value:
 n/a
 List:
 n/a

 Unit:
 A
 Group:
 n/a

Reads the <u>rectified</u> value of the <u>current</u>.

10.2.4.1.1.12 :RUSed? OVRI?

SCPI: :FETCh[:SCALar]:CURRent:RUSed? /qonly/ | :READ[:SCALar]:CURRent:RUSed? /qonly/

SHORT: OVRI? /qonly/

ID: Ovrl Mode: ΑII Suffix: float 1...12 Type: 0...100 in % Value: List: n/a Unit: n/a Group: n/a

Reads the usage of the current range.

10.2.4.1.1.13 [:TRMS?] ITRMS? Itrms

SCPI: :FETCh[:SCALar]:CURRent[:TRMS]? /qonly/ | :READ[:SCALar]:CURRent[:TRMS]? /qonly/

SHORT: ITRMS? /qonly/

ID: **Itrms** Mode: ΑII Type: float Suffix: 1...14 Value: List: n/a n/a Unit: Α Group: n/a

Reads the TRMS value of the current.

10.2.4.1.2 :CYCLe

:CALCulate :DISPlay :FETCh → [:SCALar] → :CURRent :FORMat :COUNt :CYCLe \rightarrow :INITiate :DINPut :TIME :INPut :ENERgy :INSTrument :FLICker :MEMory :FREQuency :READ → :HARMonics :SENSe :POWer :SOURce :RESistance :STATus :SSYStem :SYSTem :VARiable :TRIGger [:VOLTage]

10.2.4.1.2.1 :COUNt? COUNT? Cnr

SCPI: :FETCh[:SCALar]:CYCLe:COUNt? /qonly/ | :READ[:SCALar]:CYCLe:COUNt? /qonly/

SHORT: COUNT? /qonly/

ID: Cnr Mode: All Type: float Suffix: n/a

 Value:
 0...65535
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads an individual number of the <u>measuring cycle counter</u> which is copied into memory. This value runs up to 65535 and starts then again at 0.

10.2.4.1.2.2 :SNUMber? SCTC?

SCPI: :FETCh[:SCALar]:CYCLe:SNUMber? /qonly/ | :READ[:SCALar]:CYCLe:SNUMber? /qonly/

SHORT: SCTC? /qonly/

Reads the <u>number</u> of the <u>last sample</u> value <u>of a cycle</u>. The sample values of the instrument are counted. At the end of each cycle this counter is stored and can be read by this command. The counter runs up to 2³¹-1 and starts then again at 0. See also 10.2.10.14.5, ':SCTRigger?

SCTT?'

10.2.4.1.2.3 :TIME? CYCR? Mtime

SCPI: :FETCh[:SCALar]:CYCLe:TIME? /qonly/ | :READ[:SCALar]:CYCLe:TIME? /qonly/

SHORT: CYCR? /qonly/

ID: Mtime Mode: Normal, prCE, Flicker, HARM100

Type: float Suffix: 1...14
Value: n/a List: n/a
Unit: s Group: n/a

Reads the <u>real measuring time</u> of the <u>measuring cycle</u>. This is the time for an integer number of periods of the measured signal (in average this is the cycle time, but it depends on the signal!).

10.2.4.1.3 :DINPut? DIST?

SCPI: :FETCh[:SCALar]:DINPut? /qonly/ | :READ[:SCALar]:DINPut? /qonly/

SHORT: DIST? /qonly/

ΑII ID: digin(), see 4.4.4.2.7, 'Functions' Mode: Type: long int Suffix: 1.2 Value: 0...64 List: n/a Unit: n/a Group: n/a

Reads the status of the <u>digital inputs</u>. The bits in the answer have following meanings:

Bit 0: Input 1

Bit 1: Input 2

Bit 2: Input 3

Bit 3: Input 4

Bit 4: Input 5 Bit 5: Input 6

10.2.4.1.4 :ENERgy

:CALCulate :DISPlay :FETCh → [:SCALar] → :CURRent :FORMat :CYCLe :INITiate :DINPut :INPut :ENERgy → [:ACTive] :INSTrument :APPArent :FLICker :MEMory :FREQuency :CHARge :REACtive :READ → :HARMonics :SENSe :POWer :TIME :SOURce :RESistance :STATus :SSYStem :SYSTem :VARiable :TRIGger [:VOLTage]

10.2.4.1.4.1 [:ACTive]?

EP?

EP

:FETCh[:SCALar]:ENERgy[:ACTive]? /qonly/ | :READ[:SCALar]:ENERgy[:ACTive]? /qonly/

SHORT: EP? /qonly/

ID: ΕP Normal Mode: Type: float Suffix: 1...14 n/a Value: n/a List: Wh Unit: Group: n/a

Reads the <u>active energy</u> (integrated active power).

10.2.4.1.4.2 :APParent?

ES?

ES

SCPI: :FETCh[:SCALar]:ENERgy:APPArent? /qonly/ | :READ[:SCALar]:ENERgy:APParent?

/gonly/

SHORT: ES? /qonly/

ID: ES Mode: Normal Type: float Suffix: 1...14 Value: n/a n/a List: Unit: VAh Group: n/a

Reads the apparent energy (integrated apparent power).

10.2.4.1.4.3 :CHARge?

EI?

q

:FETCh[:SCALar]:ENERgy:CHARge? /qonly/ | :READ[:SCALar]:ENERgy:CHARge? /qonly/

SHORT: EI? /qonly/

ID: Mode: Normal Type: float Suffix: 1...14 Value: n/a List: n/a Unit: Ah Group: n/a

Reads the charge (integrated DC current).

10.2.4.1.4.4 :REACtive? EQ? EQ

SCPI: :FETCh[:SCALar]:ENERgy:REACtive? /qonly/ |

:READ[:SCALar]:ENERgy:REACtive? /qonly/

SHORT: EQ? /qonly/

ID: EQ Mode: Normal Type: float Suffix: 1...14 Value: n/a List: n/a Unit: varh Group: n/a

Reads the <u>reactive energy</u> (integrated reactive power).

10.2.4.1.4.5 :TIME? INTR?

SCPI: :FETCh[:SCALar]:ENERgy:TIME? /qonly/ | :READ[:SCALar]:ENERgy:TIME? /qonly/

SHORT: INTR? /qonly/

 ID:
 LoadOK
 Mode:
 Normal

 Type:
 long int
 Suffix:
 1...14

 Value:
 0...2³¹-1
 List:
 n/a

 Unit:
 ms
 Group:
 n/a

Reads the time of the running integration.

10.2.4.1.5 :FLICker

10.2.4.1.5.1 [:EUTest]

Selects the equipment under test measuring results. They are measured at the voltage input jacks.

```
:CALCulate
:DISPlay
:FETCh →
                                 :CURRent
                [:SCALar] →
:FORMat
                                 :CYCLe
:INITiate
                                 :DINPut
:INPut
                                 :ENERgy
                                                                  :APMoment
:INSTrument
                                 :FLICker →
                                                  [:EUTest] →
                                 :FREQuency
                                                  :LTRemain
                                                                  :DC
:MEMory
                                 :HARMonics
                                                  :PHWave
                                                                  :DELTat
:READ →
:SENSe
                                 :POWer
                                                  :SOURce
                                                                   :DMAX
:SOURce
                                                  :STATe
                                                                  :HWTRms
                                 :RESistance
:STATus
                                 :SSYStem
                                                  :STRemain
                                                                   :PLT
:SYSTem
                                 :VARiable
                                                                   :PMOMentary
:TRIGger
                                 [:VOLTage]
                                                                   :PST
                                                                   :RESult
```

10.2.4.1.5.1.1 :APMoment? FLMO? Pmoml

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:APMoment? /qonly/ |

:READ[:SCALar]:FLICker[:EUTest]:APMoment? /qonly/

SHORT: FLMO? /qonly/

ID: Pmoml Flicker Mode: Type: float Suffix: 1...4 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the <u>averaged momentary flicker level</u> of the equipment under test. It is averaged over 16 periods.

10.2.4.1.5.1.2 :DC? FLDC? dcl

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:DC? /qonly/ |

:READ[:SCALar]:FLICker[:EUTest]:DC? /qonly/

SHORT: FLDC? /qonly/

ID: dcl Mode: Flicker Type: float Suffix: 1...4 Value: in % List: n/a Unit: n/a Group: n/a

Reads the d_c value of the equipment under test.

10.2.4.1.5.1.3 :DELTat? FLDT? dtl

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:DELTat? /qonly/ <list>|

:READ[:SCALar]:FLICker[:EUTest]:DELTat? /qonly/ <list>

SHORT: FLDT? /qonly/ <list>

ID: dtl Mode: Flicker Type: float Suffix: 1...4 Value: in % List: 0...31 Unit: n/a Group: n/a

Reads the $\underline{d(t)}$ values of the equipment under test. After each measuring cycle over 16 periods you can get 32 values.

10.2.4.1.5.1.4 :DMAX? FLDX? dmaxl

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:DMAX? /qonly/ |

:READ[:SCALar]:FLICker[:EUTest]:DMAX? /qonly/

SHORT: FLDX? /qonly/

dmaxl Flicker ID: Mode: Type: float Suffix: 1...4 Value: in % List: n/a Unit: n/a Group: n/a

Reads the \underline{d}_{max} value of the equipment under test.

10.2.4.1.5.1.5 :DTMViolation? FLMV?

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:DTMViolation? /qonly/ |

:READ[:SCALar]:FLICker[:EUTest]:DTMViolation? /qonly/

SHORT: FLMV? /qonly/

ID: n/a Mode: Flicker Type: long int Suffix: 1...4 n/a Value: List: n/a Unit: n/a Group: n/a

Reads the <u>maximum number</u> of <u>half waves</u> for which the d(t) of the equipment under test was bigger than allowed in the standard.

10.2.4.1.5.1.6 :HWTRms? FLRM? Uhwl

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:HWTRms? /qonly/ <list> |

:READ[:SCALar]:FLICker[:EUTest]:HWTRms? /qonly/ <list>

SHORT: FLRM? /qonly/ <list>

 ID:
 Uhwl
 Mode:
 Flicker

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 0...31

 Unit:
 V
 Group:
 n/a

Reads the <u>half wave TRMS</u> values of the equipment under test. After each measuring cycle over 16 periods you can get 32 values.

10.2.4.1.5.1.7 :PLT? FLLT? Plt1

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:PLT? /qonly/ |

:READ[:SCALar]:FLICker[:EUTest]:PLT? /qonly/

SHORT: FLLT? /qonly/

ID: Pltl Flicker Mode: Type: float Suffix: 1...4 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the \underline{P}_{lt} value of the equipment under test.

10.2.4.1.5.1.8 :PMOMentary? FLMS? PmI

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:PMOMentary?/qonly/ <list> |

:READ[:SCALar]:FLICker[:EUTest]:PMOMentary? /qonly/ <list>

SHORT: FLMS? /qonly/ <list>

 ID:
 Pml
 Mode:
 Flicker

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 0...31

 Unit:
 n/a
 Group:
 n/a

Pstl

Reads the <u>momentary flicker level</u> of the equipment under test. After each measuring cycle over 16 periods you can get 32 values.

10.2.4.1.5.1.9 :PST? FLST?

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:PST? /qonly/ |

:READ[:SCALar]:FLICker[:EUTest]:PST? /qonly/

SHORT: FLST? /qonly/

Pstl Mode: Flicker ID: Type: float Suffix: 1...4 Value: n/a List: n/a n/a Unit: n/a Group:

Reads the \underline{P}_{st} value of the equipment under test.

10.2.4.1.5.1.10 :RESult? FLRE? LoadOK

SCPI: :FETCh[:SCALar]:FLICker[:EUTest]:RESult? /qonly/ |

:READ[:SCALar]:FLICker[:EUTest]:RESult? /qonly/

SHORT: FLRE? /qonly/

n/a Flicker ID: Mode: Type: Suffix: 1...4 long int Value: n/a List: n/a Unit: Group: n/a n/a

Reads the <u>result</u> of the <u>flicker measuring</u> at the equipment under test.

Bit 0: Set if the total evaluation of the flicker fails (=if any of the sub evaluation fails). Cleared otherwise.

Bit 1: Set if at least one P_{st} value was >1.0, cleared otherwise.

Bit 2: Set if the P_{lt} value was >0.65 at the END of the measuring interval, cleared otherwise.

Bit 3: Set if d_{max} was bigger than limit, cleared otherwise.

Bit 4: Set if d(t) was >3% for more than allowed time, cleared otherwise.

Bit 5: Set if d_c was > 3%, cleared otherwise.

10.2.4.1.5.2 :LTRemain? FLTR?

SCPI: :FETCh[:SCALar]:FLICker:LTRemain? /qonly/ |

:READ[:SCALar]:FLICker:LTRemain? /qonly/

SHORT: FLTR? /qonly/

ID:n/aMode:FlickerType:long intSuffix:n/aValue:n/aList:n/aUnit:sGroup:n/a

Reads the remaining long time for the flicker measurement.

10.2.4.1.5.3 :PHWave? FLPH? Phw

SCPI: :FETCh[:SCALar]:FLICker:PHWave? /qonly/ <list> |

:READ[:SCALar]:FLICker:PHWave? /qonly/ <list>

SHORT: FLPH? /qonly/ <list>

Mode: ID: Phw Flicker Type: float Suffix: 1...4 Value: 0...31 n/a List: Unit: W n/a Group:

Reads the <u>half wave power</u> values. After each measuring cycle over 16 periods you can get 32 values. To get a correct value it is necessary to measure the current with the current channel and not the voltage of a source!

10.2.4.1.5.4 :SOURce

Selects the source's measuring results. They are measured at the current input jacks.

```
:CALCulate
:DISPlay
                                 :CURRent
:FETCh →
                [:SCALar] →
:FORMat
                                 :CYCLe
:INITiate
                                 :DINPut
:INPut
                                 :ENERgy
:INSTrument
                                 :FLICker →
                                                  [:EUTest]
:MEMory
                                 :FREQuency
                                                  :LTRemain
                                 :HARMonics
                                                  :PHWave
:READ →
                                                  :SOURce →
                                                                   :APMoment
:SENSe
                                 ·POWer
:SOURce
                                 :RESistance
                                                                   ·DC
                                                  :STATe
                                                  :STRemain
                                  :SSYStem
                                                                   :DELTat
:STATus
:SYSTem
                                 :VARiable
                                                                   :DMAX
                                                                   :HWTRms
:TRIGger
                                  [:VOLTage]
                                                                   :PLT
                                                                   :PMOMentary
                                                                   :PST
                                                                   :RESult
```

10.2.4.1.5.4.1 :APMoment? FSMO? Pmoms

 ${\sf SCPI:} \quad : {\sf FETCh[:SCALar]:FLICker:SOURce:APMoment?/qonly/|}$

:READ[:SCALar]:FLICker:SOURce:APMoment? /qonly/

SHORT: FSMO? /qonly/

Pmoms Flicker ID: Mode: Suffix: Type: float 1...4 Value: n/a List: n/a Group: Unit: n/a n/a

Reads the <u>averaged momentary flicker level</u> of the source. It is averaged over 16 periods.

10.2.4.1.5.4.2 :DC? FSDC? dcs

SCPI: :FETCh[:SCALar]:FLICker:SOURce:DC? /qonly/ |

:READ[:SCALar]:FLICker:SOURce:DC? /qonly/

SHORT: FSDC? /qonly/

ID: dcs Flicker Mode: Type: float Suffix: 1...4 Value: in % List: n/a Unit: n/a Group: n/a

Reads the $\underline{\mathbf{d}}_{c}$ value of the source.

10.2.4.1.5.4.3 :DELTat? FSDT?

dts

SCPI: :FETCh[:SCALar]:FLICker:SOURce:DELTat? /qonly/ <list>| :READ[:SCALar]:FLICker:SOURce:DELTat? /qonly/ <list>

SHORT: FSDT? /qonly/ <list>

ID: dts Mode: Flicker Type: float Suffix: 1...4 in % 0...31 Value: List: Unit: n/a Group: n/a

Reads the $\underline{d(t)}$ values of the source. After each measuring cycle over 16 periods you can get 32 values.

10.2.4.1.5.4.4 :DMAX?

FSDX?

dmaxs

 ${\tt SCPI:} \quad : {\tt FETCh[:SCALar]:FLICker:SOURce:DMAX? /qonly/ } |$

:READ[:SCALar]:FLICker:SOURce:DMAX? /qonly/

SHORT: FSDX? /qonly/

Flicker ID: dmaxs Mode: Type: float Suffix: 1...4 Value: in % List: n/a Unit: n/a Group: n/a

Reads the \underline{d}_{max} value of the source.

10.2.4.1.5.4.5 :DTMViolation? FSMV?

SCPI: :FETCh[:SCALar]:FLICker:SOURce:DTMViolation? /qonly/ |

:READ[:SCALar]:FLICker:SOURce:DTMViolation? /qonly/

SHORT: FSMV? /qonly/

ID:n/aMode:FlickerType:long intSuffix:1...4Value:n/aList:n/aUnit:n/aGroup:n/a

Reads the <u>maximum number</u> of <u>half waves</u> for which the d(t) of the source was <u>bigger than</u> allowed in the standard.

10.2.4.1.5.4.6 :HWTRms?

FSRM?

Uhws

SCPI: :FETCh[:SCALar]:FLICker:SOURce:HWTRms? /qonly/ <list> |

:READ[:SCALar]:FLICker:SOURce:HWTRms? /qonly/ <list>

SHORT: FSRM? /qonly/ <list>

ID: Uhws Mode: Flicker Type: float Suffix: 1...4 Value: List: 0...31 n/a Unit: V or A depending on measured signal Group: n/a

Reads the <u>half wave TRMS</u> values of the source. After each measuring cycle over 16 periods you can get 32 values.

10.2.4.1.5.4.7 :PLT? FSLT?

Plts

SCPI: :FETCh[:SCALar]:FLICker:SOURce:PLT? /qonly/ |

:READ[:SCALar]:FLICker:SOURce:PLT? /qonly/

SHORT: FSLT? /qonly/

ID: Plts Mode: Flicker Type: float Suffix: n/a Value: List: n/a n/a Unit: n/a Group: n/a

Reads the \underline{P}_{lt} value of the source.

10.2.4.1.5.4.8 :PMOMentary? FSMS?

Pms

SCPI: :FETCh[:SCALar]:FLICker:SOURce:PMOMentary? /qonly/ list>|

:READ[:SCALar]:FLICker:SOURce:PMOMentary? /qonly/ <list>

SHORT: FSMS? /qonly/ <list>

ID: Pms Mode: Flicker Type: float Suffix: 1...4 Value: n/a List: 0...31 Unit: Group: n/a n/a

Reads the <u>momentary flicker level</u> of the source. After each measuring cycle over 16 periods you can get 32 values.

10.2.4.1.5.4.9 :PST?

FSST?

Psts

SCPI: :FETCh[:SCALar]:FLICker:SOURce:PST? /qonly/ |

:READ[:SCALar]:FLICker:SOURce:PST? /qonly/

SHORT: FSST? /qonly/

ID: **Psts** Mode: Flicker Type: float Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Reads the \underline{P}_{st} value of the source.

10.2.4.1.5.4.10 :RESult? FSRE? SrcOK

SCPI: :FETCh[:SCALar]:FLICker:SOURce:RESult? /qonly/ |

:READ[:SCALar]:FLICker:SOURce:RESult? /qonly/

SHORT: FSRE? /qonly/

ID: n/a Mode: Flicker Type: long int Suffix: 1...4 Value: List: n/a n/a Unit: n/a Group: n/a

Reads the <u>result</u> of the <u>flicker measuring</u> at the source.

Bit 0: Set if the total evaluation of the flicker fails (=if any of the sub evaluation fails). Cleared otherwise.

Bit 1: Set if at least one P_{st} value was >1.0, cleared otherwise.

Bit 2: Set if the P_{lt} value was >0.65 at the END of the measuring interval, cleared otherwise.

Bit 3: Set if d_{max} was bigger than limit, cleared otherwise.

Bit 4: Set if d(t) was >3% for more than allowed time, cleared otherwise.

Bit 5: Set if d_c was > 3%, cleared otherwise.

10.2.4.1.5.5 :STATe? FSTA?

SCPI: :FETCh[:SCALar]:FLICker:STATe? /qonly/ | :READ[:SCALar]:FLICker:STATe? /qonly/

SHORT: FSTA? /qonly/

ID: n/a Mode: Flicker Type: long int Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Reads the state of the flicker measuring.

Reset
 Wait
 Run
 Stop

10.2.4.1.5.6 :STRemain? FSTR?

SCPI: :FETCh[:SCALar]:FLICker:STRemain? /qonly/ |

:READ[:SCALar]:FLICker:STRemain? /qonly/

SHORT: FSTR? /qonly/

Flicker ID: Mode: n/a Suffix: Type: long int n/a Value: List: n/a n/a Unit: s Group: n/a

Reads the remaining short time for the actual short term measurement.

10.2.4.1.6 FREQuency

:CALCulate :DISPlay :FETCh → :CURRent [:SCALar] → :FORMat :CYCLe :DINPut :INITiate :INPut :ENERgy :INSTrument :FLICker :FREQuency → : FINPut :MEMory :SAMPle :READ → :HARMonics :SENSe :POWer [:SSOurce] :SOURce :RESistance :STATus :SSYStem :SYSTem :VARiable :TRIGger [:VOLTage]

10.2.4.1.6.1 :FINPut? DIFQ? DigFrq

 $SCPI: \quad :FETCh[:SCALar]:FREQuency:FINPut?\ /qonly/\ |$

:READ[:SCALar]:FREQuency:FINPut? /qonly/

SHORT: DIFQ?/qonly/

ID: DigFrq Mode: ΑII Type: float Suffix: 1, 2 Value: n/a List: n/a Unit: Hz Group: n/a

Reads the value of <u>frequency</u> input of the <u>processing signal interface</u>.

10.2.4.1.6.2 :SAMPle? SMPL?

SCPI: :FETCh[:SCALar]:FREQuency:SAMPle? /qonly/ |

:READ[:SCALar]:FREQuency:SAMPLe? /qonly/

SHORT: SMPL? /qonly/

ID:n/aMode:AllType:floatSuffix:n/aValue:n/aList:n/a

Unit: Hz Group: optional [,<NRi>], 0=A, 1=B, ...

Reads the sampling frequency of the LMG.

10.2.4.1.6.3 :SSOurce? FREQ? f

SCPI: :FETCh[:SCALar]:FREQuency[:SSOurce]? /qonly/ |

:READ[:SCALar]:FREQuency[:SSOurce]? /qonly/

SHORT: FREQ? /gonly/

 ID:
 f
 Mode:
 All

 Type:
 float
 Suffix:
 1...14

 Value:
 n/a
 List:
 n/a

 Unit:
 Hz
 Group:
 n/a

Reads the frequency of the synchronisation source

10.2.4.1.7 :HARMonics

:CALCulate :DISPlay :FETCh → :CURRent [:SCALar] → :FORMat :CYCLe :INITiate :DINPut :INPut :ENERgy :INSTrument :FLICker :MEMory :FREQuency :READ → :HARMonics \rightarrow :AMPower :SENSe :POWer :APFactor :SOURce :RESistance :CDResult :STATus :VARiable :CURRent :SYSTem [:VOLTage] :LTRemain :TRIGger :POWer [:VOLTage]

10.2.4.1.7.1 :AMPFactor? HPFM?

SCPI: :FETCh[:SCALar]:HARMonics:AMPFactor? /qonly/ |

:READ[:SCALar]:HARMonics:AMPFactor? /qonly/

SHORT: HPFM? /qonly/

prCE ID: n/a Mode: Type: float Suffix: 1...4 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the maximum smoothed power factor of the harmonic measuring.

10.2.4.1.7.2 :AMPower? HPM?

SCPI: :FETCh[:SCALar]:HARMonics:AMPower? /qonly/ |

:READ[:SCALar]:HARMonics:AMPower? /qonly/

SHORT: HPM? /qonly/

 ID:
 n/a
 Mode:
 prCE

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 W
 Group:
 n/a

Reads the maximum smoothed power of the harmonic measuring.

10.2.4.1.7.3 :APFactor? HPFA?

SCPI: :FETCh[:SCALar]:HARMonics:APFactor? /qonly/ |

:READ[:SCALar]:HARMonics:APFactor? /qonly/

SHORT: HPFA? /qonly/

 ID:
 n/a
 Mode:
 prCE

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads the <u>smoothed power factor</u> of the harmonic measuring.

10.2.4.1.7.4 :APOWer? HPAV?

SCPI: :FETCh[:SCALar]:HARMonics:APOWer? /qonly/ |

:READ[:SCALar]:HARMonics:APOWer? /qonly/

SHORT: HPAV? /qonly/

ID: n/a Mode: prCE Type: float Suffix: 1...4 Value: n/a List: n/a Unit: W Group: n/a

Reads the smoothed power of the harmonic measuring.

10.2.4.1.7.5 :CDResult? HENS?

SCPI: :FETCh[:SCALar]:HARMonics:CDResult? /qonly/ |

:READ[:SCALar]:HARMonics:CDResult? /qonly/

SHORT: HENS? /qonly/

ID: n/a Mode: prCE Type: long int Suffix: 1...4 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the <u>class D result</u> of the harmonic measuring:

Bit 0: Set if the total class D evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.

Bit 1: Set if the current was for <95% of time under the positive special envelop, cleared otherwise.

Bit 2: Set if the current was for <95% of time under the negative special envelop, cleared otherwise.

Bit 3: Set if P>600W, cleared otherwise.

Bit 4: Set if the total class C evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.

Bit 5: Set if the 60° condition failed in first halfwaye. Cleared otherwise.

Bit 6: Set if the 65° condition failed in first halfwave. Cleared otherwise.

Bit 7: Set if the 90° condition failed in first halfwave. Cleared otherwise.

Bit 8: Set if the peak value in first halfwave is negative. Cleared otherwise.

Bit 9: Set if the 60° condition failed in second halfwaye. Cleared otherwise.

Bit 10: Set if the 65° condition failed in second halfwave. Cleared otherwise.

Bit 11: Set if the 90° condition failed in second halfwave. Cleared otherwise.

Bit 12: Set if the peak value in second halfwave is negative. Cleared otherwise.

10.2.4.1.7.6 :CURRent

:CALCulate
:DISPlay
:FETCh → [:SCALar] → :CURRent
:FORMat :CYCLe
:INITiate :DINPut

laver

lh

:INPut :ENERgy :INSTrument :FLICker :MEMory :FREQuency

:STATus :SSYStem :CURRent \rightarrow :AAMPlitude :SYSTem :VARiable :LTRemain :AFUNdamental :TRIGger :POWer :AMPLitude

[:VOLTage] :FPRotz

:FRESult
:GFResult
:LIMit
:LTResult
:OLIMit
:PHASe
:POHarmonics
:POLimit
:SAVerage
:SMOothed
:STATe
:THARmonic

10.2.4.1.7.6.1 :AAMPlitude? HIAV?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:AAMPlitude? /qonly/ st> |

:READ[:SCALar]:HARMonics:CURRent:AAMPlitude? /qonly/ <list>

SHORT: HIAV? /qonly/ <list>

ID: laver Mode: prCE Type: float Suffix: 1...4

Value: n/a List: 0...40 for harmonic order

Unit: A Group: n/a

Reads the <u>average amplitude</u> of the <u>harmonics</u> of the <u>current</u>.

10.2.4.1.7.6.2 :AFUNdamental? HIFM?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:AFUNdamental? /qonly/ |

:READ[:SCALar]:HARMonics:CURRent:AFUNdamental? /qonly/

SHORT: HIFM? /qonly/

 ID:
 n/a
 Mode:
 prCE

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 A
 Group:
 n/a

Reads the <u>maximum averaged fundamental current</u> of the harmonics.

10.2.4.1.7.6.3 :AMPLitude? HIAM?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:AMPLitude? /qonly/ <list> |

:READ[:SCALar]:HARMonics:CURRent:AMPLitude? /qonly/ <list>

SHORT: HIAM? /qonly/ <list>

ID: Ih Mode: prCE, HARM100

 Type:
 float
 Suffix:
 1...4(prCE), 1...12(HARM100)

 Value:
 n/a
 List:
 0...40/99 (prCE/HARM100) for order

Unit: A Group: n/a

Reads the amplitude of the harmonics of the current.

10.2.4.1.7.6.4 :FPRotz? HFMX?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:FPRotz? /qonly/ <list> |

:READ[:SCALar]:HARMonics:CURRent:FPRotz? /qonly/ <list>

SHORT: HFMX? /qonly/ <list>

ID: n/a Mode: prCE Type: float Suffix: 1...4

Value: in % List: 0...40 for harmonic order

Unit: n/a Group: n/a

Reads the <u>maximum duration in percent</u> of a 2.5 minute window while each harmonic was over the 100% limit.

10.2.4.1.7.6.5 :FRESult? HIFL?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:FRESult? /qonly/ <list> |

:READ[:SCALar]:HARMonics:CURRent:FRESult? /qonly/ <list>

SHORT: HIFL? /qonly/ <list>

ID: n/a Mode: prCE Type: long int Suffix: 1...4

Value: 0...241-1 List: 0, 1 for array element

Unit: n/a Group: n/a

Reads the <u>long time result</u> of the <u>fluctuating harmonics</u> of the <u>current</u>. This is an array of 2 long numbers, so that you get a 64 bit result, if you read out both elements. Each bit from 0 to 40 indicates, if the corresponding harmonic has at least one time while the measuring violated the limit for more than 10% of a 2.5 minute window.

10.2.4.1.7.6.6 :GFResult? HIGF?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:GFResult? /qonly/ |

:READ[:SCALar]:HARMonics:CURRent:GFResult? /qonly/

SHORT: HIGF? /qonly/

prCE ID: n/a Mode: Suffix: Type: long int 1...4 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the global final result of the current check.

Bit 0: Set if the total current evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.

Bit 1: Set if any of the harmonics was > 100% of the allowed limit, cleared otherwise.

- Bit 2: Set if the fluctuating harmonics were for more than 10% of the 2.5 minute window between 100% and 150% of the limit. Cleared otherwise.
- Bit 3: Set if questionable vales (with '?') have occurred. Cleared otherwise.
- Bit 4: Set if measured power was > 110% of defined power. Cleared otherwise. This is only a warning, not an error.
- Bit 5: Set if measured power factor was > 110% of defined power factor. Cleared otherwise. This is only a warning, not an error.
- Bit 6: Set if measured fundamental current was > 110% of defined fundamental current. Cleared otherwise. This is only a warning, not an error.
- Bit 7: Set if measured power was < 90% of defined power. Cleared otherwise.
- Bit 8: Set if measured power factor was < 90% of defined power factor. Cleared otherwise.
- Bit 9: Set if measured fundamental current was < 90% of defined fundamental current. Cleared otherwise.
- Bit 10: Set if any harmonic is > 150% of limits. Cleared otherwise.
- Bit 11: Set if the THD condition of EN61000-3-12 failed. Cleared otherwise.

10.2.4.1.7.6.7 :IAMPlitude? HIZA?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:IAMPlitude? /qonly/ st>|

:READ[:SCALar]:HARMonics:CURRent:IAMPlitude? /qonly/ <list>

SHORT: HIZA? /qonly/ <list>

ID: n/a Mode: prCE Type: float Suffix: 1...4

Value: n/a List: 0...5 for interharmonics number relative

to start position

Unit: A Group: n/a

Reads the <u>interharmonics</u> of the <u>current</u> in CE-HRM mode. To define the analysis area see command 10.2.10.8.2, ':ISTart HNRZ'

10.2.4.1.7.6.8 :LIMit? HILM? IL

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:LIMit? /qonly/

:READ[:SCALar]:HARMonics:CURRent:LIMit? /qonly/ <list>

SHORT: HILM? /qonly/ <list>

ID: IL Mode: prCE Type: float Suffix: 1...4

Value: n/a List: 0...40 for order

Unit: A Group: n/a

Reads the <u>limits</u> of the <u>harmonics</u> of the <u>current</u>.

10.2.4.1.7.6.9 :LTResult? HILT?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:LTResult?/qonly/<list>|

:READ[:SCALar]:HARMonics:CURRent:LTResult? /qonly/ <list>

IP

Ipohc

SHORT: HILT? /qonly/ <list>

ID: n/a Mode: prCE Type: long int Suffix: 1...4

Value: 0...241-1 List: 0, 1 for array element

Unit: n/a Group: n/a

Reads the <u>long time result</u> of the <u>harmonics</u> of the <u>current</u>. This is an array of 2 long numbers, so that you get a 64 bit result, if you read out both elements. Each bit from 0 to 40 indicates, if the corresponding harmonic has at least one time while the measuring violated the limit.

10.2.4.1.7.6.10 :OLIMit? HIOV?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:OLIMit? /qonly/ <list> |

:READ[:SCALar]:HARMonics:CURRent:OLIMit? /gonly/ <list>

SHORT: HIOV? /qonly/ <list>

ID: n/a Mode: prCE Type: long int Suffix: 1...4

Value: 0...2⁴¹-1 List: 0...3 for array element

Unit: n/a Group: n/a

Reads the <u>over limit status</u> of the <u>harmonics</u> of the <u>current</u>. This is an array of 4 long numbers, so that you get two 64 bit results, if you read out the elements 0/1 or 2/3.

For array element 2/3 each bit from 0 to 40 indicates, if the corresponding harmonic has violated the limit in the actual frame ('!' on LMG display).

For array element 0/1 each bit from 0 to 40 indicates, if the corresponding harmonic has violated the 100% limit but is within the 150% limit in the actual frame ('?' on LMG display).

10.2.4.1.7.6.11 :PHASe? HIPH?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:PHASe? /qonly/ <list> |

:READ[:SCALar]:HARMonics:CURRent:PHASe? /qonly/ <list>

SHORT: HIPH? /qonly/ <list>

ID: IP Mode: HARM100 Type: float Suffix: 1...12

Value: n/a List: 0...99 for order

Unit: ° Group: n/a

Reads the phase of the harmonics of the current.

10.2.4.1.7.6.12 :POHarmonic? HPOC?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:POHarmonic? /gonly/ |

:READ[:SCALar]:HARMonics:CURRent:POHarmonic? /gonly/

SHORT: HPOC? /qonly/

ID: **Ipohc** Mode: prCE Type: float 1...4 Suffix: Value: n/a List: n/a Unit: Α Group: n/a

Reads the Partial Odd Harmonic Current.

10.2.4.1.7.6.13 :POLimit? HLIP?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:POLimit? /qonly/ |

:READ[:SCALar]:HARMonics:CURRent:POLimit? /qonly/

SHORT: HLIP? /qonly/

ID: n/a Mode: prCE Type: float Suffix: 1...4 Value: List: n/a n/a Unit: Group: n/a Α

Reads the <u>partial odd harmonic current</u> which is calculated from the <u>limits</u> at the end of a measuring.

10.2.4.1.7.6.14 :SAVerage? HIAS?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:SAVerage? /qonly/ |

:READ[:SCALar]:HARMonics:CURRent:SAVerage? /qonly/

SHORT: HIAS? /qonly/

 ID:
 n/a
 Mode:
 prCE

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 A
 Group:
 n/a

Reads the smoothed averaged TRMS current.

10.2.4.1.7.6.15 :SMOothed? HIMA?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:SMOothed? /qonly/ |

:READ[:SCALar]:HARMonics:CURRent:SMOothed? /qonly/

SHORT: HIMA? /qonly/

ID: n/a Mode: prCE Suffix: Type: float 1...4 Value: List: n/a n/a Unit: Α Group: n/a

Reads the smoothed TRMS current in this measuring mode.

10.2.4.1.7.6.16 :STATe? HIST?

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:STATe? /qonly/ |

:READ[:SCALar]:HARMonics:CURRent:STATe? /qonly/

SHORT: HIST? /qonly/

ID: Mode: prCE n/a Type: Suffix: 1...4 long int Value: n/a List: n/a Unit: n/a Group: n/a

Reads the actual result of the current check:

Bit 0: Set if the total current evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.

Bit 1: Set if any of the harmonics was > 100% of the allowed limit, cleared otherwise.

Bit 2: Set if the fluctuating harmonics were for more than 10% of the 2.5 minute window between 100% and 150% of the limit. Cleared otherwise.

Bit 3: Set if questionable vales (with '?') have occurred. Cleared otherwise.

Bit 10: Set if any harmonic is > 150% of limits. Cleared otherwise.

10.2.4.1.7.6.17 :THARmonic? HTHC?

Ithc

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:THARmonic? /qonly/ | :READ[:SCALar]:HARMonics:CURRent:THARmonic? /qonly/

SHORT: HTHC? /qonly/

prCE ID: Ithc Mode: Type: float Suffix: 1...4 Value: n/a List: n/a Unit: Α Group: n/a

Reads the Total Harmonic Current.

10.2.4.1.7.6.18 :THDistort?

lthd

SCPI: :FETCh[:SCALar]:HARMonics:CURRent:THDistort? /qonly/ |

:READ[:SCALar]:HARMonics:CURRent:THDistort? /qonly/

SHORT: HIHD? /qonly/

ID: Ithd Mode: prCE, Flicker, HARM100

Type: float Suffix: 1...4/12
Value: in % List: n/a
Unit: n/a Group: n/a

Reads the THD of the current.

10.2.4.1.7.7 :LTRemain?

HLTR?

HIHD?

SCPI: :FETCh[:SCALar]:HARMonics:LTRemain? /qonly/ |

:READ[:SCALar]: HARMonics:LTRemain? /qonly/

SHORT: HLTR? /qonly/

 ID:
 n/a
 Mode:
 prCE

 Type:
 long int
 Suffix:
 n/a

 Value:
 n/a
 List:
 n/a

 Unit:
 s
 Group:
 n/a

Reads the remaining long time for the harmonic measurement.

10.2.4.1.7.8 :POWer

:CALCulate :DISPlay :FETCh → :CURRent [:SCALar] → :FORMat :CYCLe :DINPut ·INITiate :INPut :ENERgy :INSTrument :FLICker :MEMory :FREQuency :READ → :HARMonics → :AMPower :SENSe :POWer :APFactor :SOURce :RESistance :CDResult :STATus SSYStem :CURRent :SYSTem :VARiable :LTRemain :TRIGger [:VOLTage] :POWer → :ACTive [:VOLTage] :APParent :REACtive

10.2.4.1.7.8.1 :ACTive? HPAM? Ph

SCPI: :FETCh[:SCALar]:HARMonics:POWer:ACTive? /qonly/ t> |

:READ[:SCALar]:HARMonics:POWer:ACTive? /qonly/ <list>

SHORT: HPAM? /qonly/ <list>

ID: Ph Mode: HARM100 Type: float Suffix: 1...12

Value: n/a List: 0...99 for order

Unit: W Group: n/a

Reads the <u>harmonics</u> of the <u>active power</u>.

10.2.4.1.7.8.2 :APParent? HSAM? Sh

SCPI: :FETCh[:SCALar]:HARMonics:POWer:APParent?/qonly/ t> |

:READ[:SCALar]:HARMonics:POWer:APParent? /qonly/ <list>

SHORT: HSAM? /qonly/ <list>

ID: Sh Mode: HARM100 Type: float Suffix: 1...12

Value: n/a List: 0...99 for order

Unit: VA Group: n/a

Reads the <u>harmonics</u> of the <u>apparent power</u>.

10.2.4.1.7.8.3 :REACtive? HQAM? Qh

SCPI: :FETCh[:SCALar]:HARMonics:POWer:REACtive? /qonly/ <list> |

:READ[:SCALar]:HARMonics:POWer:REACtive? /qonly/ <list>

SHORT: HQAM? /qonly/ <list>

ID:QhMode:HARM100Type:floatSuffix:1...12

Value: n/a List: 0...99 for order

Unit: var Group: n/a

Reads the <u>harmonics</u> of the <u>reactive power</u>.

10.2.4.1.7.9 [:VOLTage]

```
:CALCulate
:DISPlay
                                   :CURRent
:FETCh →
                 [:SCALar] →
:FORMat
                                   :CYCLe
:INITiate
                                   :DINPut
:INPut
                                   :ENERgy
:INSTrument
                                   :FLICker
:MEMory
                                  :FREQuency
:READ →
                                   :HARMonics →
                                                    :AMPower
:SENSe
                                  :POWer
                                                    :APFactor
:SOURce
                                  :RESistance
                                                    :CDResult
:STATus
                                   :SSYStem
                                                    :CURRent
:SYSTem
                                  :VARiable
                                                    :LTRemain
:TRIGger
                                                    :Power
                                   [:VOLTage]
                                                                     :AMPLitude
                                                    [:VOLTage] →
                                                                     :GFResult
                                                                     :LIMit
                                                                     :LTResult
                                                                     :MAMPlitude
                                                                     :OLIMit
                                                                     :PHASe
                                                                     :STATe
                                                                      :THDistortion
```

10.2.4.1.7.9.1 :AMPLitude? HUAM? Uh

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:AMPLitude? /qonly/ t> |

:READ[:SCALar]:HARMonics[:VOLTage]:AMPLitude? /qonly/ <list>

SHORT: HUAM? /qonly/ <list>

ID: Uh Mode: prCE, HARM100

Type: float Suffix: 1...4(prCE), 1...12(HARM100)
Value: n/a List: 0...40/99 (prCE/HARM100) for order

Unit: V Group: n/a

Reads the <u>amplitude</u> of the <u>harmonics</u> of the <u>voltage</u>.

10.2.4.1.7.9.2 :GFResult? HUGF?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:GFResult? /qonly/ |

:READ[:SCALar]:HARMonics[:VOLTage]:GFResult? /qonly/

SHORT: HUGF? /qonly/

ID: n/a Mode: prCE Type: long int Suffix: 1...4 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the global final result of the voltage check.

Bit 0: Set if the total voltage evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.

Bit 1: Set if any of the harmonics was > 100% of the allowed limit, cleared otherwise.

Bit 2: Set if the voltage amplitude was not within the limit, cleared otherwise.

Bit 3: Set if the frequency was not within the limit, cleared otherwise.

Bit 4: Set if the crest factor was not within the limit, cleared otherwise.

Bit 5: Set, if the peak value is not within $90^{\circ}\pm3^{\circ}$

10.2.4.1.7.9.3 :HWCFactor? FLCF?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: HWCFactor? /qonly/

:READ[:SCALar]:HARMonics[:VOLTage]: HWCFactor? /qonly/ <list>

SHORT: FLCF? /qonly/ <list>

ID: n/a Mode: prCE Type: float Suffix: 1...4

Value: n/a List: 0...31 for half wave number

Unit: n/a Group: n/a

Reads the voltage <u>crest factor of the half waves</u>. After each measuring cycle over 16 periods you can get 32 values.

10.2.4.1.7.9.4 :IAMPlitude? HUZA?

SCPI: :FETCh[:SCALar]:HARMonics:VOLTage:IAMPlitude? /qonly/ |

:READ[:SCALar]:HARMonics:VOLTage:IAMPlitude? /qonly/

SHORT: HUZA? /qonly/

ID: n/a Mode: prCE Type: float Suffix: 0...4

Value: n/a List: 0...5 for interharmonics number relative

to start position

Unit: V Group: n/a

Reads the <u>interharmonics</u> of the <u>voltage</u>. To define the analysis area see command 10.2.10.8.2,

':ISTart HNRZ'

10.2.4.1.7.9.5 :LIMit? HULM? UL

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:LIMit? /qonly/

:READ[:SCALar]:HARMonics[:VOLTage]:LIMit? /qonly/ <list>

SHORT: HULM? /qonly/ <list>

ID: UL Mode: prCE Type: float Suffix: 1...4

Value: n/a List: 0...40 for order

Unit: V Group: n/a

Reads the <u>limits</u> of the <u>harmonics</u> of the <u>voltage</u>.

10.2.4.1.7.9.6 :LTResult? HULT?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:LTResult? /qonly/ t> |

:READ[:SCALar]:HARMonics[:VOLTage]:LTResult? /qonly/ <list>

SHORT: HULT? /qonly/ <list>

ID: n/a Mode: prCE Type: long int Suffix: 1...4

Value: 0...2⁴¹-1 List: 0, 1 for array element

Unit: n/a Group: n/a

Reads the <u>long time result</u> of the <u>harmonics</u> of the <u>voltage</u>. This is an array of 2 long numbers, so that you get a 64 bit result, if you read out both elements. Each bit from 0 to 40 indicates, if the corresponding harmonic has at least one time while the measuring violated the limit.

10.2.4.1.7.9.7 :MAMPlitude? HUMX? UMax

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:MAMPlitude? /qonly/ t> |

:READ[:SCALar]:HARMonics[:VOLTage]:MAMPlitude? /qonly/ <list>

SHORT: HUMX? /qonly/ <list>

ID: UMax Mode: prCE Type: float Suffix: 1...4

Value: n/a List: 0...40 for order

Unit: V Group: n/a

Reads the maximum amplitude of the harmonics of the voltage.

10.2.4.1.7.9.8 :MAXCfactor? FLCX?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: MAXCfactor? /qonly/ |

:READ[:SCALar]:HARMonics[:VOLTage]: MAXCfactor? /qonly/

SHORT: FLCX? /qonly/

ID: n/a Mode: prCE Type: float Suffix: 1...4 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the maximum crest factor of the voltage.

10.2.4.1.7.9.9 :MAXPhi? FLPX?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: MAXPhi? /qonly/ |

:READ[:SCALar]:HARMonics[:VOLTage]: MAXPhi? /qonly/

SHORT: FLPX? /qonly/

 ID:
 n/a
 Mode:
 prCE

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 °
 Group:
 n/a

Reads the <u>maximum phase of peak value</u> of the <u>voltage</u>.

10.2.4.1.7.9.10 :MINCfactor? FLCN?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: MINCfactor? /qonly/ |

:READ[:SCALar]:HARMonics[:VOLTage]: MINCfactor? /qonly/

SHORT: FLCN? /qonly/

Mode: ID: n/a prCE Type: float Suffix: 1...4 Value: List: n/a n/a Unit: n/a Group: n/a

Reads the minimum crestfactor of the voltage.

10.2.4.1.7.9.11 :MINPhi? FLPN?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: MINPhi? /qonly/ |

:READ[:SCALar]:HARMonics[:VOLTage]: MINPhi? /qonly/

SHORT: FLPN? /qonly/

 ID:
 n/a
 Mode:
 prCE

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 °
 Group:
 n/a

Reads the minimum phase of peak value of the voltage.

10.2.4.1.7.9.12 :OLIMit? HUOV?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:OLIMit? /qonly/ <list> |

:READ[:SCALar]:HARMonics[:VOLTage]:OLIMit? /qonly/ <list>

SHORT: HUOV? /qonly/ <list>

ID: n/a Mode: prCE Type: long int Suffix: 1...4

Value: 0...2⁴¹-1 List: 0...3 for array element

Unit: n/a Group: n/a

Reads the <u>over limit status</u> of the <u>harmonics</u> of the <u>voltage</u>. This is an array of 4 long numbers, so that you get two 64 bit results, if you read out the elements 0/1 or 2/3.

For array element 2/3 each bit from 0 to 40 indicates, if the corresponding harmonic has violated the limit in the actual frame ('!' on LMG display).

Array elements 0/1 are not used.

10.2.4.1.7.9.13 :PHASe? HUPH? UP

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:PHASe? /qonly/ <list> |

:READ[:SCALar]:HARMonics[:VOLTage]:PHASe? /qonly/ <list>

SHORT: HUPH? /qonly/ <list>

ID: UP Mode: HARM100 Type: float Suffix: 1...12

Value: n/a List: 0...99 for order

Unit: ° Group: n/a

Reads the phase of the harmonics of the voltage.

10.2.4.1.7.9.14 :PPHase? FLUP?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]: PPHase? /qonly/ <list>|

:READ[:SCALar]:HARMonics[:VOLTage]: PPHase? /qonly/ <list>

SHORT: FLUP? /qonly/ <list>

ID: n/a Mode: prCE Type: float Suffix: 1...4

Value: n/a List: 0...31 for half wave number

Unit: ° Group: n/a

Reads the <u>phase angle of the voltage peak value of the half waves</u>. After each measuring cycle over 16 periods you can get 32 values.

10.2.4.1.7.9.15 :STATe? HUST?

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:STATe? /qonly/ |

:READ[:SCALar]:HARMonics[:VOLTage]:STATe? /qonly/

SHORT: HUST? /qonly/

ID: n/a Mode: prCE 1...4 Type: long int Suffix: $0...2^{5}-1$ Value: List: n/a Unit: Group: n/a n/a

Reads the actual result of the voltage check

Bit 0: Set if the total voltage evaluation failed (=if any of the sub evaluation failed). Cleared otherwise.

Bit 1: Set if any of the harmonics was > 100% of the allowed limit, cleared otherwise.

Bit 2: Set if the voltage amplitude was not within the limit, cleared otherwise.

Bit 3: Set if the frequency was not within the limit, cleared otherwise.

Bit 4: Set if the crest factor was not within the limit, cleared otherwise.

Bit 5: Set, if the peak value is not within $90^{\circ}\pm3^{\circ}$

10.2.4.1.7.9.16 :THDistort? HUHD? Uthd

SCPI: :FETCh[:SCALar]:HARMonics[:VOLTage]:THDistort? /qonly/ |

:READ[:SCALar]:HARMonics[:VOLTage]:THDistort? /qonly/

SHORT: HUHD? /qonly/

ID: Uthd Mode: prCE, Flicker, HARM100

Type: float Suffix: 1...4/12
Value: n/a List: n/a
Unit: n/a Group: n/a

Reads the THD of the voltage.

Sm

10.2.4.1.8 :POWer

:CALCulate :DISPlay :FETCh → :CURRent [:SCALar] → :FORMat :CYCLe :DINPut :INITiate :INPut :ENERgy :INSTrument :FLICker :MEMory :FREQuency :HARMonics :READ → :SENSe :POWer → :AACTive :SOURce :RESistance :AAPParent :STATus :SSYStem [:ACTive] :SYSTem :VARiable :APParent :TRIGger [:VOLTage] :AREactive :FSCale :ICAPacity :PFACtor :PHASe :REACtive

10.2.4.1.8.1 :AACTive? PM? Pm

SCPI: :FETCh[:SCALar]:POWer:AACTive? /qonly/ | :READ[:SCALar]:POWer:AACTive? /qonly/

SHORT: PM? /qonly/

ID: Pm Mode: Normal Type: float Suffix: 1...14 Value: n/a List: n/a Unit: W Group: n/a

Reads the average active power.

10.2.4.1.8.2 :AAPParent? SM?

SCPI: :FETCh[:SCALar]:POWer:AAPParent? /qonly/ | :READ[:SCALar]:POWer:AAPParent? /qonly/

SHORT: SM? /qonly/

ID: Sm Mode: Normal 1...14 Type: float Suffix: Value: List: n/a n/a Unit: Group: VA n/a

Reads the average apparent power.

10.2.4.1.8.3 [:ACTive]? P?

SCPI: :FETCh[:SCALar]:POWer[:ACTive]? /qonly/ | :READ[:SCALar]:POWer[:ACTive]? /qonly/

SHORT: P?/qonly/

Р ID: Mode: ΑII Type: float Suffix: 1...14 Value: List: n/a n/a Unit: W Group: n/a

S

Reads the <u>active power</u>.

10.2.4.1.8.4 :APParent?

SCPI: :FETCh[:SCALar]:POWer:APParent? /qonly/ | :READ[:SCALar]:POWer:APParent? /qonly/

S?

SHORT: S? /qonly/

 ID:
 S
 Mode:
 All

 Type:
 float
 Suffix:
 1...14

 Value:
 n/a
 List:
 n/a

 Unit:
 VA
 Group:
 n/a

Reads the apparent power.

10.2.4.1.8.5 :AREactive?

QM?

Qm

SCPI: :FETCh[:SCALar]:POWer:AREactive? /qonly/ |

:READ[:SCALar]:POWer:AREactive? /qonly/

SHORT: QM? /qonly/

ID: Qm Mode: Normal Type: float Suffix: 1...14 Value: n/a List: n/a Unit: var Group: n/a

Reads the average reactive power.

10.2.4.1.8.6 :FSCale?

FSP?

SCPI: :FETCh[:SCALar]:POWer:FSCale? /qonly/ | :READ[:SCALar]:POWer:FSCale? /qonly/

SHORT: FSP? /qonly/

ID: n/a Mode: ΑII Type: Suffix: 1...14 float Value: n/a List: n/a Unit: W n/a Group:

Reads the <u>full scale</u> value of the <u>power</u>.

10.2.4.1.8.7 :ICAPacity?

INCA?

Inca

SCPI: :FETCh[:SCALar]:POWer:ICAPacity? /qonly/ | :READ[:SCALar]:POWer:ICAPacity? /qonly/

SHORT: INCA? /qonly/

ID: Inca Mode: Normal Type: long int Suffix: 1...12 Value: -1, 0, +1List: n/a Unit: n/a Group: n/a

Reads the status of the inca flag. It shows, if the system is inductive or capacitive:

+1 inductive

- 0 undefined
- -1 capacitive

10.2.4.1.8.8 :PFACtor?

PF?

PF

SCPI: :FETCh[:SCALar]:POWer:PFACtor? /qonly/ | :READ[:SCALar]:POWer:PFACtor? /qonly/

SHORT: PF? /qonly/

PF ID: Mode: ΑII Type: float Suffix: 1...14 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the power factor.

10.2.4.1.8.9 :PHASe?

PHI?

PHI

SCPI: :FETCh[:SCALar]:POWer:PHASe? /qonly/ | :READ[:SCALar]:POWer:PHASe? /qonly/

SHORT: PHI? /qonly/

ID: PHI Mode: Normal Type: float Suffix: 1...12 Value: n/a List: n/a Unit: ° Group: n/a

Reads the <u>phase angle</u> in degree between current and voltage.

10.2.4.1.8.10 :REACtive?

Q?

Q

SCPI: :FETCh[:SCALar]:POWer:REACtive? /qonly/ | :READ[:SCALar]:POWer:REACtive? /qonly/

SHORT: Q?/qonly/

ID: Q Mode: ΑII Type: float Suffix: 1...14 Value: n/a List: n/a Unit: var Group: n/a

Reads the <u>reactive power</u>.

10.2.4.1.9 :RESistance

:CALCulate :DISPlay :CURRent :FETCh → [:SCALar] → :FORMat :CYCLe :INITiate :DINPut :INPut :ENERgy :INSTrument :FLICker :MEMory :FREQuency :HARMonics :READ → :SENSe :POWer :SOURce :RESistance →

 $\begin{array}{lll} : & \text{SOURce} & : & \text{RESistance} & \rightarrow & : & \text{ASResist} \\ : & & : & \text{SSYStem} & : & \text{IMPedance} \end{array}$

Rser

:SYSTem :VARiable :RSIMpedance :TRIGger [:VOLTage]

10.2.4.1.9.1 :ASResist? RSER?

SCPI: :FETCh[:SCALar]:RESistance:ASResist? /qonly/ |

:READ[:SCALar]:RESistance:ASResist? /qonly/

SHORT: RSER? /qonly/

ID: Rser Mode: Normal, prCE, Flicker

Reads the <u>active serial resistance</u>.

10.2.4.1.9.2 :IMPedance? Z? Z

SCPI: :FETCh[:SCALar]:RESistance:IMPedance? /qonly/ |

:READ[:SCALar]:RESistance:IMPedance? /qonly/

SHORT: Z? /qonly/

ID: Z Mode: Normal, prCE, Flicker

Reads the <u>impedance</u> (apparent resistance).

10.2.4.1.9.3 :RSIMpedance? XSER? Xser

 ${\sf SCPI:} \quad : {\sf FETCh[:SCALar]:RESistance:RSIMpedance?/qonly/\mid}$

:READ[:SCALar]:RESistance:RSIMpedance? /qonly/

SHORT: XSER? /qonly/

ID: Xser Mode: Normal, prCE, Flicker

Reads the reactive serial impedance.

10.2.4.1.10 :SSYStem? RLS?

SCPI: :FETCh[:SCALar]:SSYStem? /qonly/ [<NRi>] | :READ[:SCALar]:SSYStem? /qonly/ [<NRi>]

SHORT: RLS? /qonly/

Unit: n/a Group: optional [<NRi>], 0=A, 1=B, ...

Reads the supply system:

0 undefined system

- +1 right rotating system (phase order 1, 2, 3)
- -1 left rotating system (phase order 3, 2, 1)

10.2.4.1.11 :VARiable? VAR?

SCPI: :FETCh[:SCALar]:VARiable? /qonly/ t> | :READ[:SCALar]:VARiable? /qonly/ t>

SHORT: VAR? /qonly/ <list>

ID: The name a user has defined. With Mode: All

script 'abc=Utrms*2;' then ID would be

'abc'

Type: float Suffix: n/a

Value: n/a List: 0...11 for array element

Unit: n/a Group: n/a

Reads value of the user defined <u>variables</u>. They are stored as an array.

10.2.4.1.12 :VNAMe? NVAR?

SCPI: :FETCh[:SCALar]:VNAMe? /qonly/ <string program data> | :READ[:SCALar]:VNAMe?

/qonly/ <string program data>

SHORT: NVAR? /qonly/ <string program data>

 ID:
 Mode:
 All

 Type:
 float
 Suffix:
 n/a

 Value:
 n/a
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads the value of the user defined <u>variable</u> whose name was sent as <string program data>.

Example: You have a variable 'abc'. This can be read by NVAR? "abc".

10.2.4.1.13 [:VOLTage]

:CALCulate :DISPlay :FETCh \rightarrow [:SCALar] → :CURRent :FORMat :CYCLe :INITiate :DINPut :INPut :ENERgy :INSTrument :FLICker :MEMory :FREQuency :READ → :HARMonics :POWer :SENSe :SOURce :RESistance :STATus :SSYStem :SYSTem :VARiable :TRIGger :AC [:VOLTage] → :AINPut :CFACtor :DC :FFACtor :INRush :MAXPk :MINPk :PPEak

:RECTify :RUSed [:TRMS]

10.2.4.1.13.1 :AC? UAC? Uac

SCPI: :FETCh[:SCALar][:VOLTage]:AC? /qonly/ | :READ[:SCALar][:VOLTage]:AC? /qonly/

SHORT: UAC? /qonly/

ID: Uac Mode: Normal, prCE

Reads the <u>AC</u> value of the <u>voltage</u>.

10.2.4.1.13.2 :AINPut? AIVA? Ain

SCPI: :FETCh[:SCALar][:VOLTage]:AINPut? /qonly/ | :READ[:SCALar][:VOLTage]:AINPut? /qonly/

SHORT: AIVA? /qonly/

 ID:
 Ain
 Mode:
 All

 Type:
 float
 Suffix:
 1...8

 Value:
 n/a
 List:
 n/a

 Unit:
 V
 Group:
 n/a

Reads the voltage of the analogue input of the processing signal interface.

10.2.4.1.13.3 :CFACtor? UCF? Ucf

SCPI: :FETCh[:SCALar][:VOLTage]:CFACtor? /qonly/ |

:READ[:SCALar][:VOLTage]:CFACtor? /qonly/

SHORT: UCF? /qonly/

Normal Ucf ID: Mode: Type: float Suffix: 1...12 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the crest factor of the voltage.

10.2.4.1.13.4 :DC? UDC? Udc

SCPI: :FETCh[:SCALar][:VOLTage]:DC? /qonly/ | :READ[:SCALar][:VOLTage]:DC? /qonly/

SHORT: UDC? /qonly/

ID: Udc Mode: Normal, prCE

Type: float Suffix: 1...12 Value: n/a List: n/a Unit: V Group: n/a

Reads the <u>DC</u> value of the <u>voltage</u>.

10.2.4.1.13.5 :FFACtor? UFF? Uff

SCPI: :FETCh[:SCALar][:VOLTage]:FFACtor? /qonly/ |

:READ[:SCALar][:VOLTage]:FFACtor? /qonly/

SHORT: UFF? /qonly/

ID: Uff Mode: Normal Type: float Suffix: 1...12 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the <u>form factor</u> of the <u>voltage</u>.

10.2.4.1.13.6 :FSCale? FSU?

SCPI: :FETCh[:SCALar][:VOLTage]:FSCale? /qonly/ |

:READ[:SCALar][:VOLTage]:FSCale? /qonly/

SHORT: FSU? /qonly/

 ID:
 n/a
 Mode:
 All

 Type:
 float
 Suffix:
 1...12

 Value:
 n/a
 List:
 n/a

 Unit:
 V
 Group:
 n/a

Reads the full scale value of the voltage.

10.2.4.1.13.7 :MAXPk? UMAX? Upkp

 ${\sf SCPI:} \quad : {\sf FETCh[:SCALar][:VOLTage]:MAXPk? /qonly/ \mid}$

:READ[:SCALar][:VOLTage]:MAXPk? /qonly/

SHORT: UMAX? /qonly/

 ID:
 Upkp
 Mode:
 Normal

 Type:
 float
 Suffix:
 1...12

 Value:
 n/a
 List:
 n/a

 Unit:
 V
 Group:
 n/a

Reads the biggest sample value of the voltage.

10.2.4.1.13.8 :MINPk? UMIN? Upkn

SCPI: :FETCh[:SCALar][:VOLTage]:MINPk? /qonly/ | :READ[:SCALar][:VOLTage]:MINPk? /qonly/

SHORT: UMIN? /qonly/

 ID:
 Upkn
 Mode:
 Normal

 Type:
 float
 Suffix:
 1...12

 Value:
 n/a
 List:
 n/a

 Unit:
 V
 Group:
 n/a

Reads the smallest sample value of the voltage.

10.2.4.1.13.9 :PHASe? UPHI? Uphi

SCPI: :FETCh[:SCALar][:VOLTage]:PHASe? /qonly/ | :READ[:SCALar][:VOLTage]:MINPk? /qonly/

SHORT: UPHI? /qonly/

ID: n/a Mode: Normal Type: float Suffix: 1...12 Value: n/a List: n/a Unit: ° Group: n/a

Reads the <u>phase angle</u> of the voltage like displayed in the <u>Fresnel diagram</u>.

10.2.4.1.13.10 :PPEak? UPP? Upp

SCPI: :FETCh[:SCALar][:VOLTage]:PPEak? /qonly/ | :READ[:SCALar][:VOLTage]:PPEak? /qonly/

SHORT: UPP? /qonly/

 ID:
 Upp
 Mode:
 Normal

 Type:
 float
 Suffix:
 1...12

 Value:
 n/a
 List:
 n/a

 Unit:
 V
 Group:
 n/a

Reads the <u>peak peak</u> value of the voltage.

10.2.4.1.13.11 :RECTify? UREC? Urect

SCPI: :FETCh[:SCALar][:VOLTage]:RECTify? /qonly/ |

:READ[:SCALar][:VOLTage]:RECTify? /qonly/

SHORT: UREC? /qonly/

 ID:
 Urect
 Mode:
 Normal

 Type:
 float
 Suffix:
 1...12

 Value:
 n/a
 List:
 n/a

 Unit:
 V
 Group:
 n/a

Reads the <u>rectified</u> value of the <u>voltage</u>.

10.2.4.1.13.12 :RUSed? OVRU? OvrU

SCPI: :FETCh[:SCALar][:VOLTage]:RUSed? /qonly/ |

:READ[:SCALar][:VOLTage]:RUSed? /qonly/

SHORT: OVRU? /qonly/

OvrU ID: Mode: ΑII float Suffix: Type: 1...12 Value: in % List: n/a Unit: n/a Group: n/a

Reads the <u>usage</u> of the <u>range</u> in percent.

10.2.4.1.13.13 [:TRMS?] UTRMS? Utrms

SCPI: :FETCh[:SCALar][:VOLTage][:TRMS]? /qonly/ |

:READ[:SCALar][:VOLTage][:TRMS]? /qonly/

SHORT: UTRMS? /qonly/

 ID:
 Utrms
 Mode:
 All

 Type:
 float
 Suffix:
 1...14

 Value:
 n/a
 List:
 n/a

 Unit:
 V
 Group:
 n/a

Reads the <u>TRMS</u> value of the <u>voltage</u>.

10.2.5 :FORMat commands

Here you can setup the output format.

:CALCulate
:DISPlay
:FETCh
:FORMat → :DATA
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger

10.2.5.1 :DATA FRMT

SCPI: :FORMat:DATA/nquery/ <NRi>

SHORT: FRMT/nquery/ <NRi>

ID: n/a Mode: ΑII Type: long int Suffix: n/a Value: 0, 1 List: n/a Unit: n/a Group: n/a

Defines the data output format. Parameter is:

'0' or 'ASCII' for ASCII output [*RST default value]

'1' or 'PACKED' for a packed output.

In the packed output format the data are transmitted as 'defined length arbitrary block response data'. If the available buffer memory size is too small for the amount of data the LMG wants to send, the data flow will be split in several sequential blocks of data. There are three kinds of data in the blocks: ASCII data, long data (4 Byte) and float data (4 Byte). The numeric data are transferred, so that the receiving PC program can store the data directly in memory. The number 0x11223344 is arranged inside the block as 0x44 0x33 0x22 0x11. This is the order Intel based computers store the number. So if you want to read the number you can simply use a pointer to the input buffer and read the contents of the pointer.

The output changes after the end of the actual program message.

10.2.6 :INITiate commands

Here you can start or stop special actions.

:CALCulate :DISPlay :FETCh :FORMat :INITiate → :INPut :INSTrument :MEMory :READ :SENSe :SOURce :STATus :SYSTem :TRIGger	:CONTinuous :COPY :IMMediate
---	------------------------------------

10.2.6.1 :CONTinuous CONT

SCPI: :INITiate:CONTinuous <NRi>

SHORT: CONT <NRi>

ID: Mode: ΑII n/a Suffix: Type: long int n/a Value: 0, 1 List: n/a Unit: n/a Group: n/a

This activates or deactivates the <u>continuous execution</u> of the string defined with :TRIGger:ACTion or ACTN. The programmer should only use :FETCh commands, because when CONT is switched to 'ON', automatically an :INITiate:IMMediate is executed at the end of each cycle.

Parameter:

'ON' or '1' activates this mode

'OFF' or '0' deactivates this mode [*RST default value]

The standard defines, that instruments with sequential commands can only exit the 'ON' state by the device clear command of the interface. This works also with this instrument. But additionally you can exit the 'ON' state by setting it to 'OFF' with :INITiate:CONTinuouse or CONT.

10.2.6.2	2 :COPY	COPY	
	:INITiate:COPY/nquery/ COPY/nquery/		
ID: Type: Value:	n/a n/a n/a	Mode: Suffix: List:	All n/a n/a
Unit:	n/a	Group:	n/a

This forces an <u>actualisation of the values</u> to be read with the :FETCh commands. The copying of the data is done immediately and not at the end of the measuring cycle (see also 10.2.6.3, ':IMMediate INIM').

10.2.6.3	3 :IMMediate	INIM	
SCPI: SHORT:	:INITiate:IMMediate/nquery/ INIM/nquery/		
ID: Type: Value: Unit:	n/a n/a n/a n/a	Mode: Suffix: List: Group:	All n/a n/a n/a

This forces an <u>actualisation of the values</u> to be read with the :FETCh commands. In general the instrument measures continuous. After each cycle the measured values are copied into the display memory. The values read by the :FETCh commands are taken from another copy of the values. This copy is updated, whenever the :INITiate:IMMediate or INIM command is executed. By this it is sure, that all values read with sequential :FETCh commands are from one measuring cycle and belong together.

Please note, that the execution of this command lasts until the end of the cycle. This can take up to one complete cycle. Please keep this in mind when setting any time-out for expecting the answer of a following command.

Please take care to follow this rules:

- 1. Use just one INIM in one command string to the instrument.
- 2. Send a second INIM just when the request of the first INIM is answered.

10.2.7 :INPut commands

04101		
:CALCulate		
:DISPlay		
:FETCh		
:FORMat		
:INITiate		
:INPut →	:COUPling	
:INSTrument		
:MEMory		
:READ		
:SENSe		
:SOURce		
:STATus		
:SYSTem		
:TRIGger		

10.2.7.1 :COUPling	SCPL	
--------------------	------	--

SCPI: :INPut:COUPling <NRi>[,<NRi>]

SHORT: SCPL <NRi>[,<NRi>]

ID: n/a Mode: Normal, HARM100

Type: long int Suffix: n/a Value: 0, 1 List: n/a

Unit: n/a Group: optional [,<NRi>]; 0=A, 1=B

Sets or queries the setting of the <u>signal coupling</u>. Allowed values are:

'0' or 'ACDC' for AC+DC coupling [*RST default value]

'1' for AC coupling

10.2.8 :INSTrument commands

Here general set-ups of the instrument are done.

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument → :SELect
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```

10.2.8.1 :SELect MODE

SCPI: :INSTrument:SELect <NRi>

SHORT: MODE <NRi>

ID: Mode: ΑII n/a n/a Type: long int Suffix: Value: 0...4 List: n/a Unit: n/a Group: n/a

Sets or reads the measuring mode:

'0' or 'NORML' for normal measuring mode [*RST default value]

'1' or 'CEHRM' for CE harmonic measuring mode

'2' or 'CEFLK' for CE flicker measuring mode

'3' or 'HRMHUN' for 100 harmonics measuring mode

'4' or 'TRANS' for transient measuring mode

Hint

The execution of this command can take up to few seconds. The LMG works internally with a watchdog protection. To prevent that the watchdog becomes active, the 'MODE' command should be send as the only command in a message. Just the '*OPC?' can be added to get a feedback, if the command has finished ('MODE x;*OPC?').

10.2.9 :MEMory commands

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory \rightarrow
                  :FREeze
                  :SSIZe
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger
```

10.2.9.1 :FREeze FRZ

SCPI: :MEMory:FREeze <NRi>

SHORT: FRZ <NRi>

n/a ID: Mode: ΑII Type: long int Suffix: n/a Value: List: n/a 0, 1 Unit: n/a Group: n/a

<u>Freezes</u> the scope <u>RAM</u>. The scope has too much memory so it can't be copied each cycle into a separate buffer. For this reason you should set FRZ to ON when you want to readout the sample values of the scope. Parameter:

'ON' or '1' activates the freeze mode

'OFF' or '0' deactivates the freeze mode [*RST default value]

10.2.9.2 :SSIZe GMEM

SCPI: :MEMory:SSIZe? /qonly/

SHORT: GMEM? /qonly/

Reads the <u>size</u> of the sample value <u>memory</u>.

10.2.10 :SENSe commands

10.2.10.1 :AINPut

:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate

:INPut :INSTrument :MEMory :READ :FSCale :SENSe → :AINPut → :SOURce :ARON :ZERO :AVERage :STATus :SYSTem :CURRent :TRIGger :FILTer :FINPut :FLICker :HARMonics :INTegral :SWEep :TRANsient :VOLTage :WAVeform :WIRing :ZPReject

10.2.10.1.1 :FSCale AIHI

SCPI: :SENSe:AINPut:FSCale <NRf>

SHORT: AIHI < NRf>

Sets or queries the setting of the <u>full scale</u> of the <u>analogue inputs</u>.

10.2.10.1.2 :ZERO AILO

SCPI: :SENSe:AINPut:ZERO <NRf>

SHORT: AILO <NRf>

ID: n/a Mode: ΑII Type: float Suffix: 1...8 n/a Value: n/a, [*RST default value] = 0 List: Unit: n/a Group: n/a

Sets or queries the setting of the <u>zero position</u> of the <u>analogue inputs</u>.

10.2.10.2 :ARON ARON

SCPI: :SENSe:ARON <NRi>

SHORT: ARON <NRi>

ID: n/a Mode: Normal Type: long int Suffix: n/a Value: 0, 1 List: n/a Unit: Group: n/a n/a

Sets or queries if the aron circuit should be used. Following values are allowed:

0: No aron circuit is used

1: Aron circuit is used, [*RST default value]

10.2.10.3 :AVERage

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe →
                 :AINPut
:SOURce
                 :ARON
                 :AVERage →
:STATus
                                  :COUNt
:SYSTem
                 :CURRent
:TRIGger
                 :FILTer
                 :FINPut
                 :FLICker
                 :HARMonics
                 :INTegral
                 :SWEep
                 :TRANsient
                 :VOLTage
                 :WAVeform
                 :WIRing
                 :ZPReject
```

10.2.10.3.1 :COUNt AVER Aver

SCPI: :SENSe:AVERage:COUNt <NRf>

SHORT: AVER <NRf>

Sets or queries the setting of the <u>average</u> parameter.

10.2.10.4 :CURRent

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
                  :AINPut
:SENSe →
:SOURce
                  :ARON
                  :AVERage
:STATus
:SYSTem
                  :CURRent \rightarrow
                                    :DETector
:TRIGger
                  :FILTer
                                    :IDENtify
                  :FINPut
                                    :RANGe
                  :FLICker
                                    :SCALe
```

:HARMonics
:INTegral
:SWEep
:TRANsient
:VOLTage
:WAVeform
:WIRing
:ZPReject

10.2.10.4.1 :DETector IEXT

SCPI: :SENSe:CURRent:DETector <NRi>

SHORT: IEXT <NRi>

ID: n/a Mode: ΑII Type: long int Suffix: 1...4 Value: 0, 1 List: n/a Group: Unit: n/a n/a

Reads and sets <u>internal</u> or <u>external</u> shunt <u>input</u>:

'0' or 'INT' for internal shunt (current input) [*RST default value]

'1' or 'EXT' for external shunt input (voltage input)

10.2.10.4.2 :IDENtify? IDNI?

SCPI: :SENSe:CURRent:IDENtify? /gonly/

SHORT: IDNI? /qonly/

 ID:
 n/a
 Mode:
 All

 Type:
 string
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads the <u>type</u> of the external <u>current sensor</u>.

10.2.10.4.3 :RANGe

:CALCulate :DISPlay :FETCh :FORMat :INITiate :INPut :INSTrument :MEMory :READ :SENSe → :AINPut :SOURce :ARON :AVERage :STATus :SYSTem :CURRent \rightarrow :DETector :TRIGger :RANGe \rightarrow :AUTO :FILTer :FINPut :SCALe :LINTern :FLICker [:UPPer] :HARMonics :INTegral :SWEep :TRANsient

Rngl

:VOLTage :WAVeform :WIRing :ZPReject

10.2.10.4.3.1 :AUTO IAM

SCPI: :SENSe:CURRent:RANGe:AUTO <NRi>

SHORT: IAM <NRi>

ID: Mode: ΑII n/a Type: long int Suffix: 1...4 Value: 0, 1 List: n/a Unit: n/a Group: n/a

Reads and sets the status of the <u>autorange</u> function:

'0' or 'MANUAL' for manual range selection

'1' or 'AUTO' for automatic range selection [*RST default value]

10.2.10.4.3.2 :LINTern? IILS?

SCPI: :SENSe:CURRent:RANGe:LINTern?/qonly/

SHORT: IILS/qonly/

 ID:
 n/a
 Mode:
 All

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 A
 Group:
 n/a

Reads a list with the <u>available ranges</u>. You get several numbers which are separated by colons ','. The first number defines the number of following numbers. If you have selected external sensors, you get the list of their ranges.

10.2.10.4.3.3 [:UPPer] IRNG

SCPI: :SENSe:CURRent:RANGe[:UPPer] <NRf>

SHORT: IRNG <NRf>

 ID:
 Rngl
 Mode:
 All

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 A
 Group:
 n/a

Reads and sets the <u>range</u> for the <u>current</u> measurement. The parameter is the nominal value of the range.

10.2.10.4.4 :SCALe ISCA Iscal

SCPI: :SENSe:CURRent:SCALe <NRf>

SHORT: ISCA <NRf>

ID: Iscal Mode: All

Type: float Suffix: 1...4 Value: n/a, [*RST default value] = 1.0 List: n/a Unit: n/a Group: n/a

Reads and sets the <u>scaling</u> of the <u>current range</u>.

10.2.10.5 :FILTer

10.2.10.5.1 :AFILter FAAF

SCPI: :SENSe:FILTer:AFILter <NRi>[,<NRi>]

SHORT: FAAF <NRi>[,<NRi>]

ID: n/a Mode: HARM100
Type: long int Suffix: n/a
Value: 0, 1 List: n/a

Unit: n/a Group: optional [,<NRi>]; 0=A, 1=B, ...

Reads and sets the <u>anti-aliasing-filter</u> settings:

0: Anti aliasing filter manual setable (via FILT)

1: Anti aliasing filter selection automaticaly [*RST default value]

10.2.10.5.2 [:LPASs]

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
                  :AINPut
:SENSe →
                  :ARON
:SOURce
:STATus
                  :AVERage
:SYSTem
                  :CURRent
:TRIGger
                  :FILTer \rightarrow
                                                       [:STATe]
                                     [: LPASs] \ \rightarrow
                  :FINPut
                  :FLICker
                  :HARMonics
                  :INTegral
                  :SWEep
                  :TRANsient
                  :VOLTage
                  :WAVeform
                  :WIRing
                  :ZPReject
```

10.2.10.5.2.1 [:STATe] FILT

SCPI: :SENSe:FILTer[:LPASS][:STATe] <NRi>[,<NRi>]

SHORT: FILT <NRi>[,<NRi>]

ID: n/a Mode: Normal, Transient

Type: long int Suffix: n/a

Value: n/a List: n/a

Unit: n/a Group: optional [,<NRi>]; 0=A, 1=B, ...

Reads and sets the <u>filter</u> settings:

0: Filter off

1: HF Rejection filter on [*RST default value]

2: Low pass '2kHz' on

3: Low pass '9.2kHz' on

4: Low pass '60Hz' on

5: Low pass '18kHz' on

6: Low pass '6kHz' on

7: Low pass '2.8kHz' on

8: Low pass '1.4kHz' on

9: Low pass '700Hz' on

10: Low pass '350Hz' on

11: Low pass '175Hz' on

12: Low pass '87.5Hz' on

13: Low pass '30Hz' on

10.2.10.6 :FINPut

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
                 :AINPut
:SENSe \rightarrow
                 :ARON
:SOURce
:STATus
                  :AVERage
:SYSTem
                  :CURRent
:TRIGger
                  :FILTer
                                   :SCALe
                  :FINPut →
                  :FLICker
                  :HARMonics
                  :INTegral
                  :SWEep
                  :TRANsient
                  :VOLTage
                  :WAVeform
                  :WIRing
                  :ZPReject
```

10.2.10.6.1 :SCALe DIFS

SCPI: :SENSe:FINPut:SCALe <NRf>

SHORT: DIFS <NRf>

ID: n/a Mode: All Type: float Suffix: 1, 2

Value: n/a, [*RST default value] is 1.0 List: n/a Unit: n/a Group: n/a

Sets or queries the setting of the <u>scale</u> of the <u>frequency</u> input.

10.2.10.7 :FLICker

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
                  :AINPut
:SENSe →
:SOURce
                  :ARON
:STATus
                  :AVERage
:SYSTem
                  :CURRent
                  :FILTer
:TRIGger
                  :FINPut
                                    :PERiods
                  :FLICker \rightarrow
                  :HARMonics
                                    :STIMe
                  :INTegral
                  :SWEep
                  :TRANsient
                  :VOLTage
                  :WAVeform
                  :WIRing
                  :ZPReject
```

10.2.10.7.1 :PERiods FLPS FIkPer

SCPI: :SENSe:FLICker:PERiods <NRf>

SHORT: FLPS <NRf>

Reads and sets the number of periods for flicker measuring.

10.2.10.7.2 :STIMe FTIM

SCPI: :SENSe:FLICker:STIMe <NRi>

SHORT: FTIM <NRi>

Reads and sets the short term flicker measuring time.

10.2.10.8 :HARMonics

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe →
                 :AINPut
                 :ARON
:SOURce
:STATus
                 :AVERage
:SYSTem
                 :CURRent
                 :FILTer
:TRIGger
                 :FINPut
                 :FLICker
                 :HARMonics → :FDIV
                 :INTegral
                                  :REFerence
                 :SWEep
                                  :SMOoth
                 :TRANsient
                                  :TIME
                 :VOLTage
                 :WAVeform
                 :WIRing
                 :ZPReject
```

10.2.10.8.1 :FDIV FDIV

SCPI: :SENSe:HARMonics:FDIV <NRf>[,<NRi>]

SHORT: FDIV <NRf>[,<NRi>]

ID: n/a Mode: HARM100

Type: float Suffix: n/a Value: 1...50, [*RST default value] = 1 List: n/a

Unit: n/a Group: optional [,<NRi>]; 0=A, 1=B, ...

Reads and sets the frequency divider ratio.

10.2.10.8.2 :ISTart HNRZ

SCPI: :SENSe:HARMonics:ISTart <NRi>[,<NRi>]

SHORT: HNRZ <NRi>[,<NRi>]

ID:n/aMode:prCEType:long intSuffix:n/aValue:0...1000List:n/a

Unit: n/a Group: optional [,<NRi>]; 0=A, 1=B, ...

Reads and sets the number of the <u>interharmonic</u> where the <u>analysis range</u> of the interharmonics starts.

10.2.10.8.3 :REFerence HREF

SCPI: :SENSe:HARMonics:REFerence <NRi>[,<NRi>]

SHORT: HREF <NRi>[,<NRi>]

ID: n/a Mode: HARM100

Type: long int Suffix: n/a Value: 0, 1, 20 List: n/a

Unit: n/a Group: optional [,<NRi>]; 0=A, 1=B, ...

Reads and sets the state of the <u>phase reference</u> for the harmonics and the Fresnel diagram. That defines if the basic wave of U, I or the synchronisation source is set to 0° as reference for the system:

'0' for U as reference [*RST default value]

'1' for I as reference

'20' for none (=synchronisation source) as reference

10.2.10.8.4 :SMOoth SMOO

SCPI: :SENSe:HARMonics:SMOoth <NRi>

SHORT: SMOO <NRi>

ID: n/a Mode: prCE Type: long int Suffix: n/a Value: 0, 1 List: n/a Unit: n/a Group: n/a

Reads and sets the state of the smoothing:

'0' or 'OFF' for direct measuring [*RST default value]

'1' or 'ON' for smoothed measuring

10.2.10.8.5 :TIME HTIM

SCPI: :SENSe:HARMonics:TIME <NRi>

SHORT: HTIM <NRi>

Reads and sets the harmonics measuring time.

10.2.10.9 :INTegral

:CALCulate :DISPlay :FETCh :FORMat :INITiate :INPut :INSTrument :MEMory :READ :AINPut :SENSe → :ARON :SOURce :STATus :AVERage :CURRent :SYSTem

:TRIGger :FILTer :FINPut :FLICker :HARMonics :DATE :INTegral → :SWEep :INTerval :TRANsient :MODE :VOLTage :STATe :WAVeform :TIME :WIRing :ZPReject

10.2.10.9.1 :DATE INTD

SCPI: :SENSe:INTegral:DATE <NRf>,<NRf>,<NRf>

SHORT: INTD <NRf>,<NRf>,<NRf>

ID: n/a Mode: Normal Type: n/a Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Reads and sets the <u>start date</u> for an <u>energy measurement</u>. Example: INTD 2003,02,09 sets the date to the 9th February, 2003.

10.2.10.9.2 :INTerval INTI

SCPI: :SENSe:INTegral:INTerval <NRi>

SHORT: INTI <NRi>

ID:n/aMode:NormalType:long intSuffix:n/aValue:n/aList:n/aUnit:sGroup:n/a

Reads and sets the time interval for an energy measurement.

10.2.10.9.3 :MODE INTM

SCPI: :SENSe:INTegral:MODE <NRi>

SHORT: INTM <NRi>

ID: n/a Mode: Normal Type: Suffix: long int n/a Value: 0...4 List: n/a Unit: n/a Group: n/a

Reads and sets the <u>integration mode</u>:

0=off [*RST default value]

1=continuous

2=interval

3=periodic

4=summing

10.2.10.9.4 :STATe?

INTS?

SCPI: :SENSe:INTegral:STATe? /qonly/

SHORT: INTS? /qonly/

Mode: Normal ID: n/a Type: long int Suffix: n/a n/a Value: 0...5 List: Unit: Group: n/a n/a

Reads the <u>state</u> of the <u>energy</u> measurement:

0=Reset

1=Wait

2=Start

3=Run

4=Stop

5=Hold

10.2.10.9.5 :TIME

INTT

SCPI: :SENSe:INTegral:TIME <NRf>,<NRf>,<NRf>

SHORT: INTT <NRf>,<NRf>,<NRf>

ID: n/a Mode: Normal Type: n/a Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Reads and sets the <u>start time</u> for an <u>energy measurement</u>. Example: INTT 19,26,49 sets the time to 19:26:49.

10.2.10.10 :RPValues

RPHV

SCPI: :SENSe:RPValues <NRi>

SHORT: RPHV <NRi>

ID: Mode: ΑII n/a Type: long int Suffix: n/a Value: 0, 1 List: n/a Unit: Group: n/a n/a

By this you can deactivate the rejection of phantom values:

0: Phantom values are displayed

1: Phantom values are not displayed [*RST default value]

10.2.10.11 :SWEep

:CALCulate :DISPlay

:FETCh

```
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe →
                 :AINPut
:SOURce
                 :ARON
:STATus
                 :AVERage
:SYSTem
                 :CURRent
:TRIGger
                 :FILTer
                 :FINPut
                 :FLICker
                 :HARMonics
                 :INTegral
                 :SWEep →
                                  :TIME
                 :TRANsient
                 :VOLTage
                 :WAVeform
                 :WIRing
                 :ZPReject
```


SCPI: :SENSe:SWEep:TIME <NRf>

SHORT: CYCL <NRf>

Reads and sets the cycle time.

10.2.10.12 :TRANsient

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe →
                 :AINPut
:SOURce
                 :ARON
:STATus
                 :AVERage
:SYSTem
                 :CURRent
                 :FILTer
:TRIGger
                 :FINPut
                 :FLICker
                 :HARMonics
                 :INTegral
                 :SWEep
                                   :ACRegister
                 :TRANsient →
                 :VOLTage
                                   :LIMita
                                   :LIMitb
                 :WAVeform
                                   :CHANnels
                 :WIRing
                 :ZPReject
                                   :DURation
```

:OCRegister :PRETrigger :RTIMe :SIGNal :SRDT :SRDY :SROVer

10.2.10.12.1 :ACRegister TACR

SCPI: :SENSe:TRANsient:ACRegister <NRi>[,<NRi>]

SHORT: TACR <NRi>[,<NRi>]

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the AND Condition Register:

Bit 0: Slewrate condition is checked if bit is set Bit 1: Win In condition is checked if bit is set

Bit 2: Win Out condition is checked if bit is set

Bit 3: >Limit1 condition is checked if bit is set

Bit 4: <Limit1 condition is checked if bit is set

Bit 5: >Limit2 condition is checked if bit is set

Bit 6: <Limit2 condition is checked if bit is set

10.2.10.12.2 :ALIMit TLIA

SCPI: :SENSe:TRANsient:ALIMit <NRf>[,<NRi>]

SHORT: TLIA <NRf>[,<NRi>]

ID: n/a Mode: Transient Type: float Suffix: n/a Value: $\pm 1e9$, [*RST default value] = 0 List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the limit 1.

10.2.10.12.3 :BLIMit TLIB

SCPI: :SENSe:TRANsient:BLIMit <NRf>[,<NRi>]

SHORT: TLIB <NRf>[,<NRi>]

ID: n/a Mode: Transient Type: float Suffix: n/a Value: $\pm 1e9$, [*RST default value] = 0 List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the limit 2.

10.2.10.12.4 :CHANnels TRCH

SCPI: :SENSe:TRANsient:CHANnels <NRi>

SHORT: TRCH <NRi>

ID: n/a Mode: Transient

Type: long int Suffix: n/a Value: 0...4095, [*RST default value] = 4095 List: n/a Group: n/a

Reads and sets the <u>channels</u> to be <u>watched</u> in the <u>transient mode</u>. The trigger event can just be defined for a whole group, so you can include (bit set) or exclude (bit reset) the different channels from searching. Each bit defines one channel:

Bit 0: Channel 1
Bit 1: Channel 2,

10.2.10.12.5 :DURation TDUR

SCPI: :SENSe:TRANsient:DURation <NRf>[,<NRi>]

SHORT: TDUR <NRf>[,<NRi>]

ID: n/a Mode: Transient Type: float Suffix: n/a Value: 2*10⁻⁵...10, [*RST default value]=2*10⁻⁵ List: n/a

Unit: s Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the duration of the event.

10.2.10.12.6 :OCRegister TOCR

SCPI: :SENSe:TRANsient:OCRegister <NRi>[,<NRi>]

SHORT: TOCR <NRi>[,<NRi>]

ID: n/a Mode: Transient Type: long int Suffix: n/a Value: 0...127, [*RST default value] = 0 List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the OR Condition Register:

Bit 0: Slewrate condition is checked if bit is set
Bit 1: Win In condition is checked if bit is set
Bit 2: Win Out condition is checked if bit is set
Bit 3: >Limit1 condition is checked if bit is set
Bit 4: <Limit1 condition is checked if bit is set
Bit 5: >Limit2 condition is checked if bit is set
Bit 6: <Limit2 condition is checked if bit is set

10.2.10.12.7 :PRETrigger TPRE

SCPI: :SENSe:TRANsient:PRETrigger <NRf>

SHORT: TPRE <NRf>

Reads and sets the pretrigger.

10.2.10.12.8 :RTIMe TREC

SCPI: :SENSe:TRANsient:RTIMe <NRf>

SHORT: TREC <NRf>

Reads and sets the <u>record time</u>.

10.2.10.12.9 :SIGNal TSRC

SCPI: :SENSe:TRANsient:SIGNal <NRi>[,<NRi>]

SHORT: TSRC <NRi>[,<NRi>]

ID: n/a Mode: Transient
Type: long int Suffix: n/a
Value: 1, 3, 5...7, [*RST default value] = 5 List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the trigger signal source:

1: i²
3: u²
5: i
6: u
7: p

10.2.10.12.10 :SRDT TDT

SCPI: :SENSe:TRANsient:SRDT <NRf>[,<NRi>]

SHORT: TDT <NRf>[,<NRi>]

ID: n/a Mode: Transient Type: float Suffix: n/a Value: $2*10^{-5}...1$, [*RST default value] = $2*10^{-5}$ List: n/a

Unit: s Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the slew rate dt

10.2.10.12.11 :SRDY TDU

SCPI: :SENSe:TRANsient:SRDY <NRf>[,<NRi>]

SHORT: TDU <NRf>[,<NRi>]

ID: n/a Mode: Transient Type: float Suffix: n/a Value: n/a, [*RST default value] = 1 List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the <u>slew rate dy</u> of the signal.

10.2.10.12.12 :SROVer TDX

SCPI: :SENSe:TRANsient:SROVer <NRf>[,<NRi>]

SHORT: TDX <NRf>[,<NRi>]

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B

Reads and sets the <u>slew rate over x</u> value.

10.2.10.13 :VOLTage

10.2.10.13.1 :IDENtify IDNU

SCPI: :SENSe:VOLTage:IDENtify? /qonly/

SHORT: IDNU? /qonly/

ID: n/a Mode: ΑII Type: string Suffix: 1...4 Value: n/a List: n/a Unit: n/a Group: n/a

Reads the <u>type</u> of an external <u>voltage sensor</u>. The LMG450 will always return "No sensor input".

10.2.10.13.2 :RANGe

:CALCulate :DISPlay :FETCh :FORMat :INITiate :INPut :INSTrument :MEMory :READ :AINPut :SENSe → :ARON :SOURce :STATus :AVERage :SYSTem :CURRent :TRIGger :FILTer :FINPut :FLICker :HARMonics :INTegral :SWEep :TRANsient :VOLTage → :RANGe → :AUTO :SCALe :LINTern :WAVeform [:UPPer] :WIRing :ZPReject

10.2.10.13.2.1 :AUTO UAM

SCPI: :SENSe:VOLTage:RANGe:AUTO <NRi>

SHORT: UAM <NRi>

 ID:
 n/a
 Mode:
 All

 Type:
 long int
 Suffix:
 1...4

 Value:
 0, 1
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads and sets the status of the <u>autorange</u> function:

'0' or 'MANUAL' for manual range selection.

'1' or 'AUTO' for automatic range selection [*RST default value].

10.2.10.13.2.2 :LINTern? UILS?

SCPI: :SENSe:VOLTage:RANGe:LINTern?/gonly/

SHORT: UILS?/qonly/

 ID:
 n/a
 Mode:
 All

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a
 List:
 n/a

 Unit:
 V
 Group:
 n/a

Reads a list with the <u>available ranges</u>. You get several float numbers which are separated by colons ','. The first number defines the number of following numbers.

10.2.10.13.2.3 [:UPPer] URNG RngU

SCPI: :SENSe:VOLTage:RANGe[:UPPer] <NRf>

SHORT: URNG <NRf>

ID: RngU Mode: ΑII float Suffix: Type: 1...4 Value: List: n/a n/a Unit: V Group: n/a

Reads and sets the <u>range</u> for the <u>voltage</u> measurement. The parameter is the nominal value of the range.

10.2.10.13.3 :SCALe USCA Uscal

SCPI: :SENSe:VOLTage:SCALe <NRf>

SHORT: USCA <NRf>

 ID:
 Uscal
 Mode:
 All

 Type:
 float
 Suffix:
 1...4

 Value:
 n/a, [*RST default value] = 1
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads and sets the scaling of the voltage range.

10.2.10.14 :WAVeform

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
                 :AINPut
:SENSe →
:SOURce
                 :ARON
:STATus
                 :AVERage
                 :CURRent
:SYSTem
                 :FILTer
:TRIGger
                 :FINPut
                 :FLICker
                 :HARMonics
                 :INTegral
                 :SWEep
                 :TRANsient
                 :VOLTage
                 :WAVeform →
                                  :CYCLes
                 :WIRing
                                  :IUPDate
                 :ZPReject
                                  :SATRigger
                                  :SBTRigger
                                  :SCTRigger
                                  :SRATe
                                  :SSAMples
                                  :WAVE
```

10.2.10.14.1 :CYCLes GMUL

SCPI: :SENSe:WAVeform:CYCLes <NRf>

SHORT: GMUL <NRf>

ID: n/a Mode: Normal, Transient

Type: float Suffix: n/a
Value: 1...999 List: n/a
Unit: n/a Group: n/a

Reads or sets the <u>number of cycles</u> for which <u>sample values</u> are <u>stored</u>. In transient mode this value is a sample rate divider.

10.2.10.14.2 :IUPDate SACT

SCPI: :SENSe:WAVeform:IUPDate/nquery/ [<NRi>]

SHORT: SACT/nquery/ [<NRi>]

ID: n/a Mode: All Type: n/a Suffix: n/a Value: n/a List: n/a

Unit: n/a Group: optional [<NRi>], 0=A, 1=B, ...

Requests <u>new information</u> about the scope data. Before this command you should set

':MEMory:FREeze ON'. After this command you can use ':SENS:WAV:SATR',

':SENS:WAV:SBTR', ':SENS:WAV:SSAM' and ':SENS:WAV:SCTR'.

10.2.10.14.3 :SATRigger? SATR?

SCPI: :SENSe:WAVeform:SATRigger? /qonly/ [<NRi>]

SHORT: SATR? /qonly/ [<NRi>]

ID:n/aMode:AllType:long intSuffix:n/aValue:n/aList:n/a

Unit: n/a Group: optional [<NRi>], 0=A, 1=B, ...

Reads how many <u>sample</u> values are available <u>after</u> the <u>trigger</u> event. See also

":SENS:WAV:IUPD" for further information.

10.2.10.14.4 :SBTRigger? SBTR?

SCPI: :SENSe:WAVeform:SBTRigger? /qonly/ [<NRi>]

SHORT: SBTR? /qonly/ [<NRi>]

ID: n/a Mode: All Type: long int Suffix: n/a Value: n/a List: n/a

Unit: n/a Group: optional [<NRi>], 0=A, 1=B, ...

Reads how many sample values are available before the trigger event. See also

':SENS:WAV:IUPD' for further information.

10.2.10.14.5 :SCTRigger? SCTT?

SCPI: :SENSe:WAVeform:SCTRigger? /qonly/

SHORT: SCTT? /qonly/

ΑII ID: n/a Mode: Type: long int Suffix: n/a $0...\bar{2}^{31}$ -1 Value: List: n/a Unit: n/a n/a Group:

Reads the <u>number</u> of the <u>sample</u> value <u>at the trigger</u>. See also ':SENS:WAV:IUPD' for further information. The sample values of the instrument are counted. At the end of each cycle this

counter is stored and can be read by this command. The counter runs up to 2³¹-1 and starts then again at 0. See also 10.2.4.1.2.2, ':SNUMber? SCTC?'

You always get the value of group A.

10.2.10.14.6 :SRATe? GFRQ?

SCPI: :SENSe:WAVeform:SRATe? /qonly/

SHORT: GFRQ? /qonly/

Mode: ΑII ID: n/a Type: float Suffix: n/a Value: n/a n/a List: Unit: n/a Group: n/a

Reads the <u>record rate</u> of the sampled values.

10.2.10.14.7 :SSAMples SSAM

SCPI: :SENSe:WAVeform:SSAMples <NRi>

SHORT: SSAM <NRi>

ID: Mode: ΑII n/a Type: long int Suffix: n/a Value: see below List: n/a Unit: Group: n/a n/a

Reads and sets which <u>sample</u> values are stored <u>in</u> the <u>memory</u>. See also ':SENS:WAV:IUPD' for further information. The parameter has following meaning:

Bit 3: i
Bit 4: u
Bit 5: p

The Bits are counted from 0!

10.2.10.14.8 :WAVE? WAVE?

SCPI: :SENSe:WAVeform:WAVE? /qonly/ <NRi>,<list>

SHORT: WAVE? /qonly/ <NRi>,<list>

 ID:
 n/a
 Mode:
 All

 Type:
 float
 Suffix:
 1...12

 Value:
 n/a
 List:
 see below

 Unit:
 n/a
 Group:
 n/a

Before using this command you should freeze the memory with :MEMory:FREeze, to avoid data losses at long transfer duration. Reads out <u>sample values</u> specified with <NRi>:

4: i

5: u

6: p

The first allowed value in is the value read by :SENSe:WAVeform:SBTRigger?, the last allowed value that read by :SENSe:WAVeform:SATRigger?

10.2.10.15 :WIRing

WIRE

SCPI: :SENSe:WIRing <NRi>

SHORT: WIRE <NRi>

ID: n/a Mode: Normal, HARM100, TRANSIENT

Sets or queries the <u>wiring</u> of the LMG. Following values are allowed (3 to 7 only with option L45-O6 star to delta conversion!):

0: Wiring '4+0'

1: Wiring '3+1' [*RST default value]

2: Wiring '2+2'

3: Wiring '3+1, U*I*->U Δ I Δ '

4: Wiring '3+1, $U\Delta I^*->U\Delta I\Delta$ '

5: Wiring '3+1, $U\Delta I^*->U^*I^*$ '

6: Wiring '2+2 $U\Delta I^*$ -> $U\Delta I\Delta$ '

7: Wiring '2+2, $U\Delta I^*->U^*I^*$ '

10.2.10.16 :ZPReject

ZSUP

SCPI: :SENSe:ZPReject <NRi>

SHORT: ZSUP <NRi>

ID: n/a Mode: Normal Type: long int Suffix: n/a Value: 0, 1 List: n/a Unit: n/a Group: n/a

By this you can deactivate the <u>zero point rejection</u>. It is a long number with following meaning:

0: Zero point rejection is switched off

1: Zero point rejection is switched on [*RST default value]

10.2.11 :SOURce commands

:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce → :DIGital
:STATus :VOLTage

:SYSTem :TRIGger

10.2.11.1 :DIGital

:CALCulate :DISPlay :FETCh :FORMat :INITiate :INPut :INSTrument :MEMory :READ :SENSe :SOURce \rightarrow :DIGital → :CONDition :STATus :VOLTage :LIMit :SYSTem :VALue :TRIGger

10.2.11.1.1 :CONDition DOCO

SCPI: :SOURce:DIGital:CONDition <NRi>

SHORT: DOCO <NRi>

ID: n/a Mode: ΑII Type: long int Suffix: 1...8 Value: 0...3 List: n/a Unit: n/a Group: n/a

Sets or queries the <u>condition</u> of the <u>digital outputs</u>. Possible parameters are:

0: off [*RST default value]

1: on 2: >= 3: <

10.2.11.1.2 :LIMit DOLI

SCPI: :SOURce:DIGital:LIMit <NRf>

SHORT: DOLI < NRf>

ID: n/a Mode: ΑII Type: Suffix: 1...8 float Value: n/a, [*RST default value] = 0 n/a List: Unit: n/a Group: n/a

Sets or queries the setting of the <u>limits</u> of the <u>digital outputs</u>.

10.2.11.1.3 :VALue DOIX

SCPI: :SOURce:DIGital:VALue <string>

SHORT: DOIX <string>

ID: n/a Mode: All Type: string Suffix: 1...8

Value: n/a, [*RST default value] = 'Utrms' List: n/a Unit: n/a Group: n/a

Sets or queries the setting of the <u>value</u> of the <u>digital outputs</u>. As <string> you have to enter the same string as you would enter when using the instrument without interface. So you have to sent a valid ID!

10.2.11.2 :VOLTage

10.2.11.2.1 :SCALe

:CALCulate :DISPlay :FETCh :FORMat :INITiate :INPut :INSTrument :MEMory :READ :SENSe :SOURce → :DIGital :STATus :VOLTage → :FSCale :SCALe → :SYSTem :VALue :ZERO :TRIGger

10.2.11.2.1.1 :FSCale AOHI

SCPI: :SOURce:VOLTage:SCALe:FSCale <NRf>

SHORT: AOHI < NRf>

Sets or queries the setting of the <u>full scale</u> of the <u>analogue outputs</u>.

10.2.11.2.1.2 :ZERO AOLO

SCPI: :SOURce:VOLTage:SCALe:ZERO <NRf>

SHORT: AOLO <NRf>

ID: n/a ΑII Mode: Type: float Suffix: 1...8 Value: n/a, [*RST default value] = 0 List: n/a Unit: n/a Group: n/a

Sets or queries the setting of the zero position of the analogue outputs.

10.2.11.2.2 :VALue AOIX

SCPI: :SOURce:VOLTage:VALue <string>

SHORT: AOIX <string>

Sets or queries the setting of the <u>value</u> of the <u>analogue outputs</u>. As <string> you have to enter the same string as you would enter when using the instrument without interface. So you have to send a valid ID!

10.2.12 :STATus commands

10.2.12.1 :OPERation

:CALCulate :DISPlay :FETCh :FORMat :INITiate :INPut :INSTrument :MEMory :READ :SENSe :SOURce :CONDition :STATus → :OPERation → :ENABle :SYSTem :PRESet :TRIGger :QUEStionable [:EVENt] :NTRansition :PTRansition

10.2.12.1.1 :CONDition? SOC?

SCPI: :STATus:OPERation:CONDition? /qonly/

SHORT: SOC? /qonly/

ID: n/a Mode: ΑII Suffix: n/a Type: long int Value: 0...65535 List: n/a Unit: n/a Group: n/a

Reads the Operation Status Condition Register.

10.2.12.1.2 :ENABle SOEN

SCPI: :STATus:OPERation:ENABle <NRi>

SHORT: SOEN <NRi>

 ID:
 n/a
 Mode:
 All

 Type:
 long int
 Suffix:
 n/a

 Value:
 0...65535
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads and sets the Operation Status Enable Register.

10.2.12.1.3 [:EVENt]? SOE?

SCPI: :STATus:OPERation[:EVENt]? /qonly/

SHORT: SOE? /qonly/

 ID:
 n/a
 Mode:
 All

 Type:
 long int
 Suffix:
 n/a

 Value:
 0...65535
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads the Operation Status Event Register and clears it.

10.2.12.1.4 :NTRansition SONT

SCPI: :STATus:OPERation:NTRansition <NRi>

SHORT: SONT <NRi>

ID: n/a Mode: ΑII Type: Suffix: long int n/a Value: 0...65535 List: n/a Unit: n/a Group: n/a

Reads and sets the Operation Status Negative Transition Register.

10.2.12.1.5 :PTRansition SOPT

SCPI: :STATus:OPERation:PTRansition <NRi>

SHORT: SOPT <NRi>

ID: n/a Mode: ΑII Type: long int Suffix: n/a Value: 0...65535 List: n/a Unit: Group: n/a n/a

Reads and sets the Operation Status Positive Transition Register.

10.2.12.2 PRESet PRES

SCPI: :STATus:PRESet/nquery/

SHORT: PRES/nquery/

ID: n/a Mode: ΑII Type: n/a Suffix: n/a Value: n/a List: n/a Unit: Group: n/a n/a

<u>Presets</u> the operation and the query <u>registers</u>. The p-transition registers are filled with 0x7FFF, the n-transition registers with 0x0000 and the enable registers with 0x0000.

10.2.12.3 :QUEStionable

:CALCulate :DISPlay :FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce

:STATus → :OPERation :SYSTem :PRESet

:TRIGger :QUEStionable \rightarrow :CONDition

:ENABle [:EVENt] :NTRansition :PTRansition

10.2.12.3.1 :CONDition?

SQC?

SCPI: :STATus:QUEStionable:CONDition? /qonly/

SHORT: SQC? /qonly/

Mode: ΑII ID: n/a Suffix: Type: long int n/a Value: 0...65535 List: n/a Unit: n/a Group: n/a

Reads the Questionable Status Condition Register.

10.2.12.3.2 :ENABle

SQEN

SCPI: :STATus:QUEStionable:ENABle <NRi>

SHORT: SQEN <NRi>

ID: ΑII n/a Mode: Type: long int Suffix: n/a Value: 0...65535 List: n/a Unit: n/a Group: n/a

Reads and sets the **Questionable Status Enable Register**.

10.2.12.3.3 [:EVENt]?

SQE?

SCPI: :STATus:QUEStionable[:EVENt]? /qonly/

SHORT: SQE? /qonly/

 ID:
 n/a
 Mode:
 All

 Type:
 long int
 Suffix:
 n/a

 Value:
 0...65535
 List:
 n/a

 Unit:
 n/a
 Group:
 n/a

Reads the Questionable Status Event Register and clears it.

10.2.12.3.4 :NTRansition SQNT

SCPI: :STATus:QUEStionable:NTRansition <NRi>

SHORT: SQNT <NRi>

Mode: ΑII ID: n/a Type: long int Suffix: n/a Value: 0...65535 List: n/a Unit: Group: n/a n/a

Reads and sets the Questionable Status Negative Transition Register.

10.2.12.3.5 :PTRansition SQPT

SCPI: :STATus:QUEStionable:PTRansition <NRi>

SHORT: SQPT <NRi>

ID: n/a Mode: ΑII Type: long int Suffix: n/a Value: 0...65535 List: n/a Unit: n/a n/a Group:

Reads and sets the Questionable Status Positive Transition Register.

10.2.13 :SYSTem commands

10.2.13.1 :BEEPer

:CALCulate :DISPlay :FETCh :FORMat :INITiate :INPut :INSTrument :MEMory :READ :SENSe :SOURce :STATus :IMMediate :SYSTem → :BEEPer → :TRIGger :DATE :ERRor :HELP :KEY :LANGuage :OPTions :PHEADER :TIME :VERSion

10.2.13.1.1 :IMMediate BEEP

SCPI: :SYSTem:BEEPer:IMMediate/nquery/

SHORT: BEEP/nquery/

ID: n/a Mode: ΑII Type: n/a Suffix: n/a Value: List: n/a n/a Unit: Group: n/a n/a

Forces the internal beeper to produce a short sound.

10.2.13.2 :DATE DATE

SCPI: :SYSTem:DATE <NRf>,<NRf>,<NRf>

SHORT: DATE <NRf>,<NRf>,<NRf>

ID: n/a Mode: ΑII Type: n/a Suffix: n/a Value: n/a List: n/a Unit: Group: n/a n/a

Reads and sets the <u>system date</u>. Format is DATE yyyy,mm,dd. Example: DATE 2003,02,09 sets the date to the 9th February, 2003.

10.2.13.3 :ERRor

Following errors can occur:

No.	Name	Possible reason; what to do
8	Overrun error at CONT ON	Too many values were requested in a too short time
7	Nested TRIGger:ACTion not	
	allowed	
6	Action Buffer Overrun	Too many commands after the TRIGger:ACTion
		command
5	Command header error; (or	Not existing or misspelled command or wrong SCPI
	maybe wrong path before)	path
4	Formatter output has overrun	Internal error, please contact ZES
2	Parser output has overrun	Internal error, please contact ZES
1	Parser deadlocked	Internal error, please contact ZES
0	No error	-
-101	Invalid character	A '(' or ')' is missing in a <list></list>
-103	Invalid separator	A wrong character instead of the expected separator
		(',', ';', ':', ' <eos>',)</eos>
-110	Command header error	Not existing or misspelled command
-113	Undefined header	There are no default commands to complete the header
		automatically. You have to enter the complete
		command
-120	Numeric data error	A number was expected but not send
-123	Exponent too large	Exponent is > 37

No.	Name	Possible reason; what to do
-124	Too many digits	Number has more than 9 digits
-131	Invalid suffix	Suffix too big or small
-150	String data error	A'" is missing
-221	Settings conflict	Setting at the moment impossible. For example to
		change a measuring range while autorange is active
-222	Data out of range	Happens for example at invalid <list> entries</list>
-224	Illegal parameter value	Happens for example if you want to change to the (not
		existing) measuring mode 27
other	Illegal error, please inform	An error in the internal error handling. Please contact
	your supplier	ZES

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem \rightarrow
                 :BEEPer
:TRIGger
                 :DATE
                                   :ALL
                 :ERRor →
                 :HELP
                                   :COUNt
                 :KEY
                                   [:NEXT]
                 :LANGuage
                 :OPTions
                 :PHEADER
                 :TIME
                 :VERSion
```

10.2.13.3.1 :ALL? ERRALL?

SCPI: :SYSTem:ERRor:ALL? /qonly/

SHORT: ERRALL? /qonly/

ID: n/a Mode: ΑII Type: n/a Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Reads <u>all errors</u>, including error code and error description, separated by colons out of the error/event queue.

10.2.13.3.2 :COUNt? ERRCNT?

SCPI: :SYSTem:ERRor:COUNt? /qonly/

SHORT: ERRCNT? /qonly/

ID: ΑII Mode: n/a Type: long int Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Reads the <u>number of errors</u> in the error/event queue.

10.2.13.3.3 [:NEXT]? ERR?

SCPI: :SYSTem:ERRor[:NEXT]? /qonly/

SHORT: ERR? /qonly/

ID: n/a ΑII Mode: Type: n/a Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Reads the <u>oldest</u> entry from the <u>error</u>/event queue, including error code and error description, separated by colons (',').

10.2.13.4 :HELP

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem →
                 :BEEPer
:TRIGger
                 :DATE
                 :ERRor
                 :HELP →
                                 :HEADers
                                  :SHEaders
                 :KEY
                 :LANGuage
                 :OPTions
                 :PHEADER
                 :TIME
                 :VERSion
```

10.2.13.4.1 :HEADers? HEAD?

SCPI: :SYSTem:HELP:HEADers? /qonly/

SHORT: HEAD? /qonly/

ID: n/a Mode: ΑII Type: n/a Suffix: n/a Value: List: n/a n/a Unit: n/a Group: n/a Returns a <u>list</u> of all <u>SCPI headers</u>. This list is a <defined length arbitrary block response data>. Because this command has a very special output format it should only be used stand alone.

10.2.13.4.2 :SHEaders? SHEAD?

SCPI: :SYSTem:HELP:SHEaders? /qonly/ [<NRi>]

SHORT: SHEAD? /qonly/ [<NRi>]

ID: n/a Mode: ΑII Type: Suffix: n/a n/a Value: n/a List: n/a Unit: n/a Group: n/a

Returns a <u>list</u> of all <u>SHORT headers</u>. This list is a <defined length arbitrary block response data>. Because this command has a very special output format it should only be used stand alone.

If the optional NRi is '0', then the output is according to SCPI standard. If it is '1' there are additional information in the format 'x;y t':

- x, if specified, is the maximum suffix
- ;y, if specified, is the maximum index
- t, if specified, is the data type

10.2.13.5 :KEY KEY

SCPI: :SYSTem:KEY <NRi>

SHORT: KEY <NRi>

ID: n/a Mode: ΑII Type: long int Suffix: n/a n/a Value: n/a List: Unit: n/a Group: n/a

Queries the last pressed key or simulates the pressing of a key. Valid key numbers are:

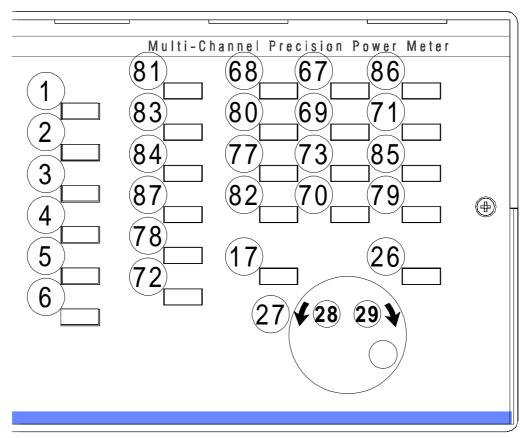


Figure 40: Keynumbers

Please note, that the rotary knob can just be set but not queried!

10.2.13.6 :LANGuage LANG

SCPI: :SYSTem:LANGuage/nquery/ <NRi>

SHORT: LANG/nquery/ <NRi>

ID: n/a Mode: ΑII Type: long int Suffix: n/a Value: 0, 1 List: n/a Unit: n/a Group: n/a

Changes the <u>command set</u> to be used. Parameter can be:

'0' or 'SCPI' to go to the SCPI command set

'1' or 'SHORT' to go to the SHORT command set

The new language will be used beginning with the following command header.

There is no *RST default value! The language at power up will be SCPI. A 'device clear' or 'BREAK' will also select SCPI.

10.2.13.7 :OPTions? OPTN?

SCPI: :SYSTem:OPTions? /qonly/

SHORT: OPTN/qonly/

ID: ΑII n/a Mode: Type: long int Suffix: n/a $0...2^{23}$ -1 Value: List: n/a Unit: n/a Group: n/a

Reads the <u>installed options</u> inside the LMG. The return value is a long parameter where the bits have following function (bit set = option installed):

Bit 0: COM A interface

Bit 1: COM B interface

Bit 2: Printer interface

Bit 3: IEEE488.2 interface

Bit 4: Memory card drive

Bit 5: Floppy disk drive

Bit 6: Processing signal interface 1

Bit 7: Processing signal interface 2

Bit 8: Flicker

Bit 9: Harm100

Bit 10: Transients

Bit 11: Extended memory

Bit 16: Linked values

10.2.13.8 :PHEader

PHDR

SCPI: :SYSTem:PHEader <string program data>

SHORT: PHDR <string program data>

ID:n/aMode:AllType:stringSuffix:n/aValue:n/aList:n/aUnit:n/aGroup:n/a

Sets or reads the printer header. At *RST this value is deleted.

For example

PHDR "HELLO"

would cause to output "HELLO" before each printing.

10.2.13.9 :TIME

TIME

SCPI: :SYSTem:TIME <NRf>,<NRf>,<NRf>

SHORT: TIME <NRf>,<NRf>,<NRf>

ID: n/a Mode: ΑII Type: Suffix: n/a n/a Value: n/a List: n/a Unit: n/a Group: n/a

Reads and sets the <u>system time</u>. Format is TIME hh,mm,ss. Example: TIME 10,26,46 sets the time to 10:26:46.

10.2.13.10 :VERSion? VER?

SCPI: :SYSTem:VERSion? /qonly/

SHORT: VER? /qonly/

ID: Mode: ΑII n/a Suffix: Type: n/a n/a 1999.0 Value: List: n/a Group: Unit: n/a n/a

Returns the version of the SCPI implementation. Returns always '1999.0'.

10.2.14 :TRIGger commands

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger →
                 :ACTion
                 :ICURrent
                 :INTerval
                 [:SEQuence]
```

10.2.14.1 :ACTion ACTN

SCPI: :TRIGger:ACTion/nquery/

SHORT: ACTN/nquery/

ΑII ID: n/a Mode: Suffix: Type: n/a n/a Value: n/a List: n/a Unit: n/a Group: n/a

Defines an <u>action</u> which has to be performed, when :INIT:CONT is set to ON and a trigger event occurs. All program headers which follow behind the ';' after TRIG:ACT will be used, until the end of the program message.

Example: ACTN; UTRMS?; ITRMS?

This defines that each time a trigger event occurs in the INIT:CONT ON state, the TRMS values of voltage and current are returned. See also 10.2.6.1, ':CONTinuous CONT'. The

same example in SCPI syntax would be.

:TRIG:ACT::FETC:TRMS?::FETC:CURR:TRMS?

There is no *RST default value!

10.2.14.2 :ICURrent IINC

SCPI: :TRIGger:ICURrent/nquery/

SHORT: IINC/nquery/

ID: n/a Mode: ΑII Type: n/a Suffix: n/a Value: n/a n/a List: Unit: n/a Group: n/a

Triggers the measuring of the inrush current. The value for the inrush current is reset to 0. See also 10.2.4.1.1.6

10.2.14.3 :INTerval

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
                 :ACTion
:TRIGger →
                 :ICURrent
                 :INTerval →
                                  :RESet
                 [:SEQuence]
                                  :STARt
                                   :STOP
```

10.2.14.3.1 :RESet RESET

SCPI: :TRIGger:INTerval:RESet/nquery/

SHORT: RESET/nquery/

ID: n/a Mode: Normal Type: n/a Suffix: n/a Value: n/a n/a List: Unit: n/a Group: n/a

Resets the energy measurement.

10.2.14.3.2 :STARt START

SCPI: :TRIGger:INTerval:STARt/nquery/

SHORT: START/nquery/

ID: n/a Mode: Normal, prCE, Flicker, Transient

Type: n/a Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Starts a time dependent measuring (e.g. energy, flicker, ...)

10.2.14.3.3 :STOP STOP

SCPI: :TRIGger:INTerval:STOP/nquery/

SHORT: STOP/nquery/

ID: n/a Mode: Normal, prCE, Flicker, Transient

Type: n/a Suffix: n/a Value: n/a List: n/a Unit: n/a Group: n/a

Stops a time dependent measuring (e.g. energy, flicker, ...)

10.2.14.4 [:SEQuence]

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger →
                 :ACTion
                 :ICURrent
                 :INTerval
                 [:SEQuence] →
                                   :COUPle
                                   :EXTend
                                   :SOURce
```

10.2.14.4.1 :COUPle COUPL

SCPI: :TRIGger[:SEQuence]:COUPle <NRi>[,<NRi>]

SHORT: COUPL <NRi>[,<NRi>]

ID: n/a Mode: Normal, HARM100, Transient

Type: long int Suffix: n/a Value: see below List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B, ...

Sets or reads the coupling mode for the trigger (synchronisation) signal. Possible values are:

'0' or 'ACDC' for AC/DC coupling mode [*RST default value]

'4' for Low pass filter < 300Hz

- '6' for Low pass filter < 80Hz
- '8' for High pass filter > 10Hz
- '10' for High pass filter > 30Hz
- '12' for Band pass 10 300Hz
- '13' for Amplitude modulation 10 300Hz
- '14' for Band pass 30 80Hz

10.2.14.5 :EXTend

```
:CALCulate
:DISPlay
:FETCh
:FORMat
:INITiate
:INPut
:INSTrument
:MEMory
:READ
:SENSe
:SOURce
:STATus
:SYSTem
:TRIGger \rightarrow
                  :ACTion
                  :ICURrent
                  :INTerval
                  [:SEQuence] →
                                  :COUPle
                                   :EXTend →
                                                     :FILTer
                                   :SOURce
                                                     :HYSTeresis
                                                     :LEVel
                                                     :SOURce
```

10.2.14.5.1 :FILTer TRDF

SCPI: :TRIGger[:SEQuence]:EXTend:FILTer <NRi>[,<NRi>]

SHORT: TRDF <NRi>[,<NRi>]

ID: n/a Mode: Normal, HARM100, Transient

Type: long int Suffix: n/a Value: 0...13 List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B, ...

Reads and sets the filter of the extended trigger.

- 0: Filter off
- 1: HF rejection filter on [*RST default value]
- 2: Low pass '2kHz' on
- 3: Low pass '9.2kHz' on
- 4: Low pass '60Hz' on
- 5: Low pass '18kHz' on
- 6: Low pass '6kHz' on
- 7: Low pass '2.8kHz' on
- 8: Low pass '1.4kHz' on
- 9: Low pass '700Hz' on

10: Low pass '350Hz' on11: Low pass '175Hz' on12: Low pass '87.5Hz' on13: Low pass '30Hz' on

10.2.14.5.2 :HYSTeresis TRDH

SCPI: :TRIGger[:SEQuence]:EXTend:HYSTeresis <NRf>[,<NRi>]

SHORT: TRDH <NRf>[,<NRi>]

ID: n/a Mode: Normal, HARM100, Transient

Type: float Suffix: n/a Value: n/a List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B, ...

Reads and sets the hysteresis of the extended trigger.

10.2.14.5.3 :LEVel TRDL

SCPI: :TRIGger[:SEQuence]:EXTend:LEVel <NRf>[,<NRi>]

SHORT: TRDL <NRf>[,<NRi>]

ID: n/a Mode: Normal, HARM100, Transient

Type: float Suffix: n/a Value: n/a List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B, ...

Reads and sets the <u>level</u> of the extended trigger.

10.2.14.5.4 :SOURce TRDE

SCPI: :TRIGger[:SEQuence]:EXTend:SOURce <NRi>[,<NRi>]

SHORT: TRDE <NRi>[,<NRi>]

ID: n/a Mode: Normal, HARM100, Transient

Type: long int Suffix: n/a Value: 0...7 List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B, ...

Reads and sets the <u>source</u> of the extended trigger.

Valid values are:

0' = is

1' = is*is

2' = us

3' = us*us

4' = ps

5' = i

6' = u

'7' = p

10.2.14.5.5 :SOURce SYNC

SCPI: :TRIGger[:SEQuence]:SOURce <NRi>[,<NRi>]

SHORT: SYNC <NRi>[,<NRi>]

ID: n/a Mode: Normal, HARM100, Transient

Type: long int Suffix: n/a Value: 0...4 List: n/a

Unit: n/a Group: optional [,<NRi>], 0=A, 1=B, ...

Sets or reads the synchronisation source. Possible values are:

'0' or 'LINE' for line synchronisation

'1' or 'EXTS' for external synchronisation

'2' or 'U' for synchronisation to the voltage signal [*RST default value]

'3' or 'I' for synchronisation to the current signal

'4' or 'XTRIG' for synchronisation to the Extended trigger

10.2.15 Special commands

10.2.15.1 :GTL GTL

SCPI: :GTL /nquery/ SHORT: GTL /nquery/

ID: n/a Mode: ΑII Type: n/a Suffix: n/a Value: n/a List: n/a Unit: Group: n/a n/a

Sets the instrument back to the local state (**g**o **t**o local). This should be the last command of a remote control sequence

10.2.15.2 :LEN LEN

SCPI: :LEN/nquery/ SHORT: LEN/nquery/

ID: n/a Mode: ΑII n/a Suffix: n/a Type: Value: n/a List: n/a Unit: n/a Group: n/a

Initiates the LMG's remote state but adjustments made via the front panel keyboard of the meter will also be accepted (local **en**able). It depends on the applications if it is useful or not.

10.2.16 Example 1

Following you find a small example for periodic data exchange via RS232 interface:

^{&#}x27; QBasic 1.1

^{&#}x27; Example for reading data from a LMG95/450/500

```
' LMG should be set to following:
' MEASURING Menu
' Normal measuring mode, 500ms cycle time
' IF/IO (OPTIONS) Menu
' Rmote Device: COM1 RS232
' Dev.: COM1: 9600 Baud, EOS < lf>, Echo off, Protocol None
' Connect COM1 of your PC to COM1 of LMG with a 1:1 cable (all pins
' connected, no NULL modem).
DECLARE FUNCTION readans$ ()
OPEN "COM1:9600,N,8,1,ASC,CD0,CS0,DS0,OP0,RS,TB2048,RB4096" FOR RANDOM AS #1
PRINT #1, "syst:lang short" + CHR$(10); ' Change command set
PRINT #1, "actn;utrms?;itrms?" + CHR$(10); ' Request Utrms and Itrms
PRINT #1, "cont on" + CHR$(10);
                                           ' Continue output
   answer$ = readans$
                                            ' Read answer from LMG
   val1 = VAL(answer$)
                                            ' Calculate values
   val2 = VAL(MID$(answer$, 1 + INSTR(1, answer$, ";")))
   PRINT USING "Answer: & Value1: ###.###V Value2: ##.####A"; readans$; val1; val2
LOOP UNTIL INKEY$ = CHR$(32)
                                           ' Loop, until SPACE bar pressed
LOOP UNTIL INKEY$ = CHR$(32)
PRINT #1, "cont off" + CHR$(10);
                                          ' Stop continue output
SLEEP 1
PRINT #1, "gtl" + CHR$(10);
                                          ' Go back to local mode
CLOSE #1
FUNCTION readans$
   answer$ = ""
      a$ = INPUT$(1, 1)
                                        ' Read character from interface
      IF a$ <> CHR$(10) THEN
                                        ' If it is not the EOS character
         answer$ = answer$ + a$
                                        ' add character to answer string
      END IF
   LOOP WHILE a$ <> CHR$(10)
                                        ' Loop until EOS is reached
   readans$ = answer$
                                        ' return answer
END FUNCTION
```

10.2.17 Example 2

Following you find a small example for one time data exchange via RS232 interface. Additionally to the SCPI commands you find the same functionality in SHORT syntax.

```
' QBasic 1.1
' Example for reading data from a LMG95/450/500
' LMG should be set to following:
' MEASURING Menu
' Normal measuring mode, 500ms cycle time
' IF/IO (OPTIONS) Menu
' Rmote Device: COM1 RS232
' Dev.: COM1: 9600 Baud, EOS < lf>, Echo off, Protocol None
' Connect COM1 of your PC to COM1 of LMG with a 1:1 cable (all pins
' connected, no NULL modem).
DECLARE FUNCTION readans$ ()
OPEN "COM1:9600,N,8,1,ASC,CD0,CS0,DS0,OP0,RS,TB2048,RB4096" FOR RANDOM AS #1
PRINT #1, "READ:CURRENT:TRMS;:FETCH:VOLTAGE:TRMS" + CHR$(10); 'Request values
(SCPI)
'PRINT #1, "SYST:LANG SHORT" + CHR$(10);
                                               'Change Language to SHORT
'PRINT #1, "INIM;ITRMS?;UTRMS?" + CHR$(10); 'Request values (SHORT)
                                            ' Read answer from LMG
   answer$ = readans$
   val1 = VAL(answer$)
                                            ' Calculate values
   val2 = VAL(MID$(answer$, 1 + INSTR(1, answer$, ";")))
```

```
PRINT USING "Answer: & Value1: ##.###A Value2: ###.##V"; readans$; val1; val2
LOOP UNTIL INKEY$ = CHR$(32)
                                          ' Loop, until SPACE bar pressed
PRINT #1, "gtl" + CHR$(10);
                                          ' Go back to local mode
CLOSE #1
FUNCTION readans$
  answer$ = ""
  DO
                                       ' Read character from interface
      a$ = INPUT$(1, 1)
      IF a$ <> CHR$(10) THEN
                                       ' If it is not the EOS character
        answer$ = answer$ + a$
                                       ' add character to answer string
      END IF
  LOOP WHILE a$ <> CHR$(10)
                                       ' Loop until EOS is reached
                                       ' return answer
  readans$ = answer$
END FUNCTION
```

10.2.18 Testing the interface using a terminal program

For testing the interface, or how any commands work it is recommended to use a terminal program (e.g. Hyperterminal under WINDOWS).

Setup the LMG450 pressing *IF/IO* several times until you reach the IF/IO menu. With **IF** you reach the setup menu. If the instrument should be in the remote state switch it back to local by **Goto Local**. Choose the profile 'ComA: Terminal' and connect the ComA jack with a 1:1 cable to your PC.

Now setup you computer. Start you terminal program and set it up to 9600Baud, 8Data Bit, 1Stop Bit, No Parity and No Protocol. Select the correct comport of your computer.

If you now type in '*IDN?' and press Return, the status bar of LMG450 should change from 'Active Local' to 'Active Remote'. If not, check if the characters you typed in are echoed on your screen or not.

If everything is ok, then you get an answer string with the manufacturer, the device, the serial number and the software version.

If all this fails, check all settings and cables and try again.

10.2.19 SCPI command Example

This shows you as an example (in SCPI language), what you could send, what the instrument should answer and some comments about this. Some of the responses like measuring values depend on measured signals, so they may be different, if you try this examples. This examples work with a new powered on instrument (no commands before!). For testing some functions we recommend to use the RS232 interface, because it is much more simple to use than the IEEE interface. In principal the example works with both interfaces. This should help you to program your requests and to understand how to communicate with the instrument.

Two comments on the syntax in the 'Sent' column: A ' \cup ' stands for a space character, a ' \downarrow ' for the <cr> (carriage return) character (which is the enter key, if you use for example a RS232 terminal-program on your PC).

No.	Sent	Received	Comments
1	*rst↓		Reset the instrument to it's default values.
-	1814		After this first command the instrument
			changes to the remote state.
2	*idn?₊	ZES ZIMMER Electronic	You ask the instrument for it's identification.
[*1dii	Systems GmbH, LMG450,	Total ask the instrument for it is identification.
		serial number, version	
3a	fetc:volt:trms n ?↓	0	Reads out the voltage of channel $\mathbf{n}(=1,2,)$.
	Tetc.voit.tills i !.←		You don't get the actual value, because there
			has been no values copied to the interface
			buffer
3b	read:volt:trms n ?↓	220.34	Waits until the end of the measuring cycle,
	read.voit.umsn:		copies the values of channel n to the
			interface buffer and outputs the actual
			voltage
3c	fetc:volt:trms n ?↓	220.34	No values were copied to the interface buffer,
	rece.voit.timsii.		so you get the same result!
4a	read:volt:trmsn?;:rea	220.21;0.6437	Waits until the end of the measuring cycle,
	d:curr:trms n ?↓	,	copies the values of channel n to the
	d.cuii.tiiisii.		interface buffer and outputs the actual
			voltage. Then the instrument waits until the
			end of the next measuring cycle, copies the
			values to the interface buffer and outputs the
			actual current. The voltage and current are
			from different measuring cycles!!
4b	read:volt:trmsn?;:fet	221.13;0.6432	Waits until the end of the measuring cycle,
	c:curr:trms n ?↓		copies the values of channel n to the
			interface buffer and outputs the actual
			voltage and current. The voltage and current
			are from the same measuring cycle!!
4c	read:volt:trms n ?↓	217.75;0.6135	Waits until the end of the measuring cycle,
	fetc:curr:trms n ?↓		copies the values to the interface buffer and
	icc.cuii.uiiisii:		outputs the actual voltage and current of
			channel n . The voltage and current are also
			from the same measuring cycle!!
5a	calc:form∪,,Bpk=Ur		Enters the script between the "" signs. This
	ect/(4*f*3*0.000091		script is stored in the script editor and
	(6);↓		executed from the next measuring cycle.
	Hpk=Ipp/2*3/0.0856		
	08;↓ Ho=Pels/1.25660		
	Ua=Bpk/1.2566e-		
	6/Hpk;"↓		

No.	Sent	Received	Comments
5b	read:var?∪(0:1)↓	3.4567,2.8405	Waits until the end of the measuring cycle, copies the values to the interface buffer and outputs the variables 0 to 1 (Bpk and Hpk). Both are from the same measuring cycle!!
6a	fetc:volt:trm3?↓		You misspelled the request
6b	syst:err:all?₊	command header error:TRM3	You ask the error queue what happened and get the answer. If you have misspelled more than this command, you get more answers.
7a	inst:sel∪1; *opc?↓		Switch to the CE harmonics mode
7b	read:harm:curr:ampl n?∪(3:5) I	1.2346,00034,0.9984	Waits until the end of the measuring cycle, copies the values of channel n to the interface buffer and outputs the amplitudes of the current harmonics of order 3 to 5. All are from the same measuring cycle!!
7c	inst:sel∪norml; *opc?₊J		switch back to the normal measuring mode
8a	trig:act;:fetc:volt:trm s?;:fetc:pow?		Defines that the voltage and the power should be output after every measuring cycle, without any further request.
8b	init:cont∪on↓	220.34;15.345 220.19;15.217 	Activates this continuous output of the values defined with 'actn'. (until the CONT OFF command!)
8c	init:cont∪off₊		stops the continuous output.
9a	mem:fre∪on		freezes the scope memory
9b	sens:wav:iupd;:sens: wav:ssam?;:sens :wav:sbtr?;:sens:wav :satr?-	56, -3204, +4506	calculates new information to the sampled values of group B (0 = group A, 1 = group B), reads which values are stored and how much values are stored before and after the trigger
9c	sens:wav:wave?∪5, (-100:100)↓	220.45, 221.36 (comma separated one dimensioned array with the size 201)	Reads out the sampled values of the voltage
9d	mem:fre∪off₊J		deactivates the scope memory
10	gtl		Changes from the remote to the local state. So the instrument can be controlled manually

10.2.20 SHORT command Example

This shows you as an example (in SHORT language), what you could send, what the instrument should answer and some comments about this. Some of the responses like measuring values depend on measured signals, so they may be different, if you try this examples. This examples work with a new powered on instrument (no commands before!). For testing some functions we recommend to use the RS232 interface, because it is much more simple to use than the IEEE interface. In principal the example works with both interfaces.

This should help you to program your requests and to understand how to communicate with the instrument.

Two comments on the syntax in the 'Sent' column: A '∪' stands for a space character, a '¬' for the <cr> (carriage return) character (which is the enter key, if you use for example a RS232 terminal-program on your PC).

No.	Sent	Received	Comments
1	*rst₊		Reset the instrument to it's default values.
			After this first command the instrument
			changes to the remote state.
2	*idn?₊	ZES ZIMMER Electronic	You ask the instrument for it's identification.
		Systems GmbH, LMG450,	
		serial number, version	
3	syst:lang short₊		Switch to the SHORT command set
4a	utrms n ?↓	0	Reads out the voltage of channel n (= 1 , 2 ,).
			You don't get the actual value, because there
			has been no values copied to the interface
			buffer
4b	inim;utrms n ?↓	220.34	Waits until the end of the measuring cycle,
			copies the values of channel n to the
			interface buffer and outputs the actual
			voltage
4c	utrms n ?↓	220.34	No values of channel n were copied to the
			interface buffer, so you get the same result!
5a	inim;utrmsn?;inim;i	220.21;0.6437	Waits until the end of the measuring cycle,
	trms n ?₊		copies the values of channel n to the
			interface buffer and outputs the actual
			voltage. Then the instrument waits until the
			end of the next measuring cycle, copies the
			values to the interface buffer and outputs the
			actual current. The voltage and current are
			from different measuring cycles!!
5b	inim;utrmsn?;itrmsn	221.13;0.6432	Waits until the end of the measuring cycle,
	?₊⅃		copies the values of channel n to the
			interface buffer and outputs the actual
			voltage and current. The voltage and current
			are from the same measuring cycle!!
5c	inim;utrms n ?↓	217.75;0.6135	Waits until the end of the measuring cycle,
	itrms n ?₊		copies the values of channel n to the
			interface buffer and outputs the actual
			voltage and current. The voltage and current
			are also from the same measuring cycle!!

No.	Sent	Received	Comments
6a	form∪,,Bpk=Urect/(4*f*3*0.0000916); ↓ Hpk=Ipp/2*3/0.0856 08;↓ Ua=Bpk/1.2566e- 6/Hpk;"↓		Enters the script between the "" signs. This script is stored in the script editor and executed from the next measuring cycle.
6b	inim;var?∪(0:1)₊J	3.4567,2.8405	Waits until the end of the measuring cycle, copies the values to the interface buffer and outputs the variables 0 to 1 (Bpk and Hpk). Both are from the same measuring cycle!!
7a	utrm3?₊		You misspelled the request
7b	errall?₊J	command header error:UTRM	You ask the error queue what happened and get the answer. If you have misspelled more than this command, you get more answers.
8a	mode∪1; *opc?↓		Switch to the CE harmonics mode
8b	INIM;HIAM?∪(3:5	1.2346,00034,0.9984	Waits until the end of the measuring cycle, copies the values to the interface buffer and outputs the amplitudes of the current harmonics of order 3 to 5. All are from the same measuring cycle!!
8c	mode∪norml; *opc?↓		switch back to the normal measuring mode
9a	actn;utrms n ?;p n ?₊⅃		Defines that the voltage and the power of channel n should be output after every measuring cycle, without any further request.
9b	cont∪on₊	220.34;15.345 220.19;15.217 	Activates this continuous output of the values defined with 'actn'. (until the CONT OFF command!)
9c	cont∪off₊		stops the continuous output.
10a	frz∪on		freezes the scope memory
10b	sact1;ssam?; sbtr?;satr?↓	56, -3204, +4506	calculates new information to the sampled values of group B (0 = group A, 1 = group B), reads which values are stored and how much values are stored before and after the trigger
10c	wave1?∪5, (- 100:100)↓	220.45, 221.36 (comma separated one dimensioned array with the size 201)	Reads out the sampled values of the voltage of channel 1
10d 11	frz∪off₊ gtl		deactivates the scope memory Changes from remote to the local state. So
	5"		the instrument can be controlled manually

10.3 Physical devices

The physical devices are the jacks at the rear panel of the instrument.

10.3.1 The serial interfaces

The most simple but universal interface. The LMG450 has build in two of them in the standard instrument.

Both can be used for data logging as well as for remote control. The maximum transfer rate is 115200 Baud. That are about 10000 characters per second. By this you are able to transfer also the very many harmonic values in real time to your PC.

Together with the BMP2PC software (available from our homepage) you can also get screen shots via the serial interface onto your PC.

With the same speed you can also remote control the instrument, send commands and get answers.

10.3.1.1 COM A, RS232

In this female connector a null modem is implemented. That means if you want to connect COM A of the LMG450 to a PC you have to use a cable which connects 1:1 (without a null modem function).

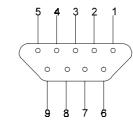


Figure 41: COM A connector

Pin	1	2	3	4	5	6	7	8	9
Comment	nc	TxD	RxD	nc	GND	nc	CTS	RTS	nc

10.3.1.2 COM B, RS232

In this male connector <u>no</u> null modem is implemented. That means if you want to connect COM B of the LMG450 to a PC you have to use a cable <u>with null modem function</u>.

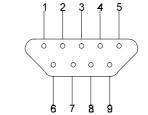


Figure 42: COM B connector

Pin	1	2	3	4	5	6	7	8	9
Comment	DCD	RxD	TxD	DTR	GND	DSR	RTS	CTS	RI

10.3.2 IEEE488.2

This interface is also known as IEC625 bus or GPIB. By it you can implement the LMG into an existing bus system.

The IEEE interface can just be used for remote control, not for logging. The maximum data transfer is about 1 Mbytes per second. This and the connection of several other devices makes this bus a standard for complex measuring systems

This port has the pinout defined in the standard IEEE488. You can use the standard cables.

10.3.3 Parallel Port

Whenever you want to print out data directly, this interface is used. In the LMG we have implemented drivers for the most popular printers. They are just needed, if you want to print out graphics.

Like with the serial interface you can print out cyclic values as tables.

Printers are not the fastest devices, so it can happen, that the printer gets more data than it can handle. In this case the printing is interrupted

This port has the same pinout like a PC parallel port. You can use the same cables.

11 Logging of values to drives, printer and interfaces

All menues you see can be stored to a memory card, floppy disk drives, interfaces or can be printed out. In principal you get what you see. Some exceptions are described in the individual chapters (e.g. you get all harmonics, not only the visible). If you want to record in single mode you get the values you see. That means when you have frozen the display you get the frozen values. If you are in a periodic mode then you get the actual values, also if you have frozen the display.

The data logging is handled in a way that you have to press as few keys as possible to get the result: To output the measured values periodically or one time to an interface or storage media.

There are no menus where you have to choose the values you want to output. Choose just one of the available menus and press *Print/Log*.

You get an dialog box where you can choose the destination of the logging (with **Dest.**). This can be a file, an interface or a printer.

Each single destination entry in this menu describes an output device and its most important setting. For storage media this is the file name, for the printer the printer type and for the interfaces the baud rate. This and other settings you can change at any time by pressing **Set.** Your changes are stored in so called 'profiles'. This profiles are stored in the memory. They are just valid in their environment: If you change the baud rate of ComA for <u>logging</u>, the baud rate of ComA for <u>remote control</u> is not changed!

In the dialog box you see further on the state of the chosen destination device. For storage media you see here also the available size and the number of stored files. For printers you can get 'printer ready', 'printer busy' or 'paper empty'.

11.1 Start of logging

The logging itself starts, if you close the dialog box with *Enter*. (if you press *Esc* you close the box without storing). In the status bar you get at the right side a red/green flashing log display while the logging is active.

If you want to output to a serial interface it could happen, that this interface is already reserved for remote control. In this case you are asked, if you want to change the usage of this interface from remote control to logging. If you say 'Yes' the usage is changed. Please make sure, that you don't have any remote controlled data transfer before you press *Enter*.

11.2 End of logging

To stop an periodic output (one time outputs are stopped automatically) you have to press Print/Log again. By pressing Enter you stop the logging, with Esc you leave the dialog box

11.3 Logging profiles (output devices)

Following profiles are accessible after pressing **Dest.**:

Disk(Data): filename

Writes the <u>data</u> of the actual menu to the file 'filename'. As default this is 'LOG', but you can choose any other name with up to 6 characters. This name is expanded by a two digit number which is incremented with each new logging. The extension is always '.AT'. Some examples for filenames are (the number is generated by the LMG):

LOG00.DAT LOG01.DAT MYDAT05.DAT MOTOR_01.DAT MOTOR_02.DAT

If you want to know, which files already exist on a media, how much space is available or if you want to setup anything press **Set.**

Here you can choose a new name for the next logging with **File**. By pressing **Mark*** you can mark/unmark files and delete them with **Del***. With **Clear Disk** you format a media.

Typ. lets you choose another output format (see 11.4, 'Output formats')

Caution

Do never remove the media, while a logging is in progress. This can corrupt the files and destroy your measuring results!

Disk(Scr): filename

Saves a <u>screen shot</u> of the displayed menu as a PCX file at the media. All settings are identical to 'Disk(Data)', except the **Typ.** is fixed to 'PCX'.

ComA: baudrate

The measuring values are transferred in the chosen 'Output as' format via ComA with the displayed baud rate. With **Set** you can change baud rate, protocol or the format. For the connection to the PC you have to use a 1:1 cable.

ComB: baudrate

Same like 'ComA: baudrate', but another jack and you have to use a null-modem cable.

ComA: BMP2PC

If you don't have a storage media but want to get screen shots, you can use this profile. Use our program BMP2PC (available on our homepage www.zes.com) and connect your PC with a 1:1 cable with ComA. Then you can transfer a screen shot to the PC and the receiving program stores it as a bitmap file.

Lpt: printer

On a connected printer you can output measuring values as well as hardcopies of the actual screen. The 'output as displayed' is pure text, so that you can connect almost every printer. For a graphical output you have to setup the correct printer type. Due to the growing number of printers it's not possible to write a driver for each type. So we implemented 5 generic drivers which can drive most available printers:

EPSON 9-Pin

EPSON ESP/P

EPSON ESP/P2

HP DeskJet

HP LaserJet

In case of any doubts please contact your local computer shop.

After pressing **Set** you can setup the model (**Prn**) and the output format (**Output as**). Further on you can create a comment (**Rem**) which is also printed (see 11.5, 'Remarks, header lines').

Some models try to get a complete image of a page in their RAM before they start printing. Therefore you might think, the printer is not working, if you send it just some few lines.

It's not a good idea to output a page after just few lines. Therefore we send as default no form feed to the printer. But you can change this with **At end**: instead of 'None' setup 'paper out'. Or you can press **Page out** to do this manually, when you like.

11.3.1 Output intervals

With **Mode** you can setup how often the values should be output:

every cycle The values are periodically output after each measuring cycle. Please make

sure, that the output device is fast enough!

periodic The values are output after the interval you set up. The minimum time is 10s.

After you have chosen 'periodic' you get this time in a highlighted box. If the value is ok, you press just *Enter*. If not press **Per.** and change it. Leave the

box with Enter.

every integral The output interval depends on the settings of the *Int. Time* menu. The

outputs starts, if you have started an integration. For the different integration

modes you get:

continuous Output at end of measuring cycle

interval One time output after the integration time is over.

periodic Periodic after each integration time summing Output at end of measuring cycle

by script The output is done, when the print() function in the script editor is called (see

4.4.4.2.7, 'Functions').

11.4 Output formats

Output as displayed

As default the values are output in the same position like at the display. A one-time output of default menu, 1st channel could look like this:

```
Itrms:1= 0.0270 A
Utrms:1= 0.1414 V
P:1=-0.004 W
Q:1= 0.000 var
S:1= 0.004 VA
PF:1= 0.9992
```

Output as csv (Excel)

At periodic output it is an advantage, if the values are ordered by time. To do this choose the 'csv (Excel)' format.

```
dt/s,Itrms1/A,Utrms1/V,P1/W,Q1/var,S1/VA
216.00E-03, 289.94E-03, 221.61E+00, 41.313E+00, 49.210E+00, 64.253E+00
716.00E-03, 289.51E-03, 221.68E+00, 41.290E+00, 49.132E+00, 64.178E+00
1.2160E+00, 289.64E-03, 221.59E+00, 41.172E+00, 49.234E+00, 64.180E+00
1.7230E+00, 290.86E-03, 221.45E+00, 41.291E+00, 49.435E+00, 64.410E+00
2.2160E+00, 289.72E-03, 221.54E+00, 41.261E+00, 49.164E+00, 64.184E+00
2.7160E+00, 289.95E-03, 221.57E+00, 41.335E+00, 49.181E+00, 64.245E+00
3.2160E+00, 289.21E-03, 221.54E+00, 41.206E+00, 49.065E+00, 64.073E+00
3.7160E+00, 289.75E-03, 221.46E+00, 41.280E+00, 49.126E+00, 64.178E+00
4.2160E+00, 289.83E-03, 221.44E+00, 41.232E+00, 49.181E+00, 64.178E+00
4.7160E+00, 290.01E-03, 221.50E+00, 41.290E+00, 49.210E+00, 64.238E+00
```

```
5.2160E+00, 289.41E-03, 221.51E+00, 41.262E+00, 49.066E+00, 64.109E+00
```

The measuring values are written in scientific format without identifier or unit into a table. By this it is very easy to load such data into for example EXCEL. Invalid values are marked as '-----'. Each line ends with <CR><LF>.

The first column is always the time in seconds after the start of the logging. In general this is an integer multiple of the cycle time. In the harmonic and flicker modes you find here the number of signal periods which were used for analysis. So if you know the signal frequency you can calculate the real time (an exception is the Harm100 mode, because here the measuring has to be done with gaps!)

11.5 Remarks, header lines

At the start of each output (floppy disk, memory card, printer, ...) you can place several comment/header lines. When logging periodically, this header lines are just printed at the start of logging.

When editing this field (see 11.3, 'Logging profiles (output devices)') you can use a pre defined example with **Exmp**. You can modify and delete this example by **Edit**. If you have finished, press **End**.

You can see standard text and some special identifiers with a leading '\$'. They will be replaced when logging the header by their real value. In the case of '\$Cycle' the real cycle time will be inserted at this position. You can select every identifier. For a list of this identifiers please refer chapter 10.2, 'Commands'. The 'ID' field specifies the useable values. They are the same identifiers like for the script editor.

If you log the *Default* menu with the example header you get following result:

```
My Company
Printed at 22.04.2003 14:22:13
Cycletime 500.00 ms
Voltage at channel 2: 136.99mV

Itrms:1 0.0320 A
Utrms:1 212.01 V
P:1 -0.14 W
Q:1 6.78 var
S:1 6.78 VA
PF:1 20.646 m
```

Like in the script editor you can call the pre-defined lists (see chapter 4.5, 'Entering identifiers, characters and text'). Just remember to use the '\$' in front of the identifier.

When "Output as table" in front of each comment line a 'REM' is written to simplify evaluation.

11.6 Storage media

Storage media are used to store single or periodic measuring data. The data format is equal to the data format of the serial or parallel interface. But this data are written immediately and evaluated later on.

Equivalent to a screen dump to a printer you can make a screen shot and store it in the popular PCX file format.

The LMG450 can have either a memory card drive or a floppy disk drive

11.6.1 Floppy disk drive

The optional floppy disk drive is a PC compatible 3 1/2" drive for 1.44 Mbytes disks.

The file format is MSDOS (FAT) format. So you can read it with each PC with an Microsoft OS.

Floppy disk is a very good medium for data transfer to a PC if you want to evaluate the measured data afterwards. The disadvantage is the slow data transfer and the medium storage capacity. The medium transfer rate is just about 20kbyte per second, if you use a blank, formatted disk

If you want to store harmonic values you get about 100 harmonics for 4 channels for each measuring cycle. That are 400 values which take about 5000 characters in storage. At 200ms cycle time you have about 25kbyte per second! In this case it might be better to use a memory card drive.

11.6.2 Memory card drive

Also the memory card drives use the MSDOS (FAT) format. But they are much faster. And you can get memory cards with several Mbytes capacity.

A big advantage of memory cards is the immunity against electromagnetic distortions.

If you have a laptop with PCMCIA card (equal to PC card) drive you can read the memory card directly. For other PCs you can use external drives

11.6.2.1 Reading memory cards with a laptop

The used memory cards are SRAM cards according to the PCCard standard (identical to PCMCIA). On some laptops the memory card reader has to be configured first, to read memory cards. Please ask your computer supplier for details and check the user manual of the memory card reader.

A general description for WIN95/98

Open the file Config.sys with an editor and add the following two lines at the end:

device=c:\windows\system\csmapper.sys

device=c:\windows\system\carddrv.exe /slot=n

n means the number of PCCard slots of the laptop. Check that both files csmapper.sys and carddrv.exe exist in the c:\windows\system directory.

Now restart the laptop with fitted memory card. The Windows Explorer will show the SRAM card as a separate drive.

11.6.3 USB memory stick

The number of files and directories in the root directory must not be more than 150. Else you get the error message "File Table Overflow".

The stick must be formatted with FAT16. FAT32 will not work! The stick must not contain any own operating system (like e.g. Titanium Cruzer). Such an OS must be removed before the usage. The stick must not have more than one partition.

After calling the log dialog it can take several seconds until the structure of the memory stick is analysed. The time increases, if more files or stored on the stick. If the log dialog is opened, the stick must not be removed.

The stick implementation does not support a real formatting of the stick. So if you choose formatting, only the files in the root directory are delete. This can take several seconds. For a real formatting, please use a PC.

11.7 Import of data into PC programs

To get the measuring values into your PC you have two possibilities: You can store them on a storage media or you can send them via the serial interface.

11.7.1 Data exchange via storage media

If you are using a floppy disk it is no problem if you have a standard floppy disk drive. For the memory card you need a laptop with a free PCMCIA (PC-Card) slot or an external card reader. ZES also offers such card readers.

11.7.2 Data exchange via serial interface

For this you just need a 1:1 cable (or a null modem cable if you are using ComB) and an installed terminal program. On each Windows PC you should have the program 'Hyperterm' already installed.

- 1. Start Hyperterm and enter any name for the new connection.
- 2. Choose the COM port which is connected to your PC.
- 3. Set up this port with following parameters:

Baud rate 115200
Databits 8
Parity None
Stopbits 1
Protocol None

4. Hyperterm is now ready to receive data. To test the connection press *Print/Log* at LMG, choose 'ComA: 115200' as destination. If the baud rate should not be 115200 please set it via **Set.** If you are using ComB do the same for it..

The mode should be set to 'one-time' and 'output as table'.

- 5. Press *Enter* to start the transfer.
- 6. Hyperterm should now display the values. If not, check the correct ports, cable and all settings. Check also that Hyperterm is 'on-line'. If not, open the connection.
- 7. Hyperterm receives correct data. You can save the following data into a file via menu 'transfer' and 'save text'
- 8. Press at LMG *Print/Log* again and choose now 'every cycle'. Start logging with *Enter*. In Hyperterm you see now the received data which are stored in background.
- 9. To stop the logging press *Print/Log* and *Enter*.
- 10.Stop the recording of Hyperterm by closing the text file. If you open this file with any text editor you see the logged data.

11.7.3 Country dependent numbers

Float numbers are output with a dot '.' as decimal separator. This can cause problems, when your computer is set up to use ',' as separator (like for example in Germany). In this case set up your operating system to use the dot '.' as separator.

11.7.4 Reading data into EXCEL

First make sure, that the decimal separator is set up correctly. Then start Excel and load the file. Choose the number of lines Excel should skip to reject the header.

As column separator select a space.

Now the data from the file are read into Excel without any problems.

11.8 Error messages

Drive not ready

You have chosen a storage media as destination, but this media is not plugged in. Press *Esc* until the message vanishes. Choose another destination or insert the storage media

Operation not permitted

An error occurred while storing. For example the storage media was removed.

Output device too slow - stopped!

The chosen output device is too slow to handle the data in real time. In this case the logging is stopped. Press *Esc* until the message vanishes. Choose a faster output device or reduce the data volume for example by choosing a longer cycle time.

All values until this message are stored correctly.

12 Miscellaneous

12.1 Frequently asked questions

12.1.1 Accuracy of measured and computed values

The accuracy of the directly measured values I, U and P can be found in the tables in 13.3.3 'Accuracy'. The following calculations illustrate how to use these tables and how to calculate the error for other values (1).

The read value of device should be:

U_{trms}=230.000V, range 250V, peak range 400V

 I_{trms} =0.95000A, range 1.2A, peak range 3.75A

 $\lambda = 0.25000$

f=50.0000Hz

P=54.625W, range 300W, peak range 1500W

AC coupling mode for the signal

From the table for the general accuracies, the following errors for voltage and current can be determined (using the peak values of the respective measuring range):

$$\Delta U = \pm (0.05\% \text{ of } Rdg. + 0.05\% \text{ of } Rng.) = \pm (0.115V + 0.02V) = \pm 0.315V$$

$$\Delta I = \pm (0.05\% \text{ of } Rdg. + 0.05\% \text{ of } Rng.) = \pm (0.475mA + 1.875mA) = \pm 2.35mA$$

$$\Delta P = \pm (0.07\% \text{ of } Rdg. + 0.04\% \text{ of } Rng.) = \pm (38.24mW + 600mW) = \pm 0.638W$$

The power factor is computed as follows:

$$\lambda = \frac{P}{S} = \frac{P}{U * I}$$

The absolute maximum error for power factor is calculated corresponding to the rules of error computation using the total differential:

$$\Delta \lambda = \frac{\partial \lambda}{\partial P} * \Delta P + \frac{\partial \lambda}{\partial U} * \Delta U + \frac{\partial \lambda}{\partial I} * \Delta I$$

$$\Delta \lambda = \frac{\Delta P}{U * I} - \frac{P * \Delta U}{I * U^2} - \frac{P * \Delta I}{I^2 * U}$$

Miscellaneous LMG450

$$\Delta \lambda = \frac{0.638W}{230V * 0.95A} + \frac{54.625W * 0.315V}{0.95A * (230V)^{2}} + \frac{54.625W * 2.35mA}{(0.95A)^{2} * 230V}$$

$$\Delta \lambda = 0.0020$$

This is the absolute maximum error (worst case) that can occur in the calculation of the power factor. The typical error is two to five times better!

The relative measuring errors are:

$$U\%_{measure} = \frac{\Delta U}{U} = 0.137\%$$

$$I\%_{measure} = \frac{\Delta I}{I} = 0.247\%$$

$$P\%_{measure} = \frac{\Delta P}{P} = 1.16\%$$

$$\lambda \%_{measure} = \frac{\Delta \lambda}{\lambda} = 0.78\%$$

To get the real error, the inaccuracy of display (1 digit) has to be taken into account:

$$U\%_{display} = \frac{0.01V}{230.0V} = 0.004\%$$

$$I\%_{display} = \frac{0.0001A}{0.95A} = 0.01\%$$

$$P\%_{display} = \frac{0.01W}{54.625W} = 0.02\%$$

$$\lambda \%_{display} = \frac{0.0001}{0.25} = 0.04\%$$

This results in the following measuring values:

$$\begin{array}{ll} U_{trms} &= (230.00 \pm 0.32) V \\ I_{trms} &= (0.9500 \pm 0.0024) A \\ P &= (54.625 \pm 0.638) W \\ 1 &= 0.2500 \pm 0.0020 \end{array}$$

When using the AC+DC coupling instead of the AC coupling, you get different errors. In this case you might get an additional DC current of $\Delta I_{DC}=\pm(10\mu V/Ri)=\pm(10\mu V/2m\Omega)=\pm5mA$. This error influences the TRMS value in the following way:

$$I_{trms} = \sqrt{I_{ac}^2 + I_{dc}^2}$$

$$\Delta I_{trms} = \pm \left(\frac{\partial I_{trms}}{\partial I_{ac}} * \Delta I_{ac} + \frac{\partial I_{trms}}{\partial I_{dc}} * \Delta I_{dc} \right)$$

$$\Delta I_{trms} = \pm \left(\frac{I_{ac}}{I_{trms}} * \Delta I_{ac} + \frac{I_{dc}}{I_{trms}} * \Delta I_{dc} \right)$$

With an reading of I_{dc}=0.00112A you get:

$$\Delta I_{trms} = \pm \left(\frac{0.95A}{0.95A} * 2.35mA + \frac{1.12mA}{0.95A} * 5mA\right) = \pm 2.3559mA$$

For the active power you have an additional error of $\pm (10\mu V^2/Ri/V_{DC})= \pm (10\mu V^2/2m\Omega/V_{DC})=\pm 5mW/V_{dc}$. So with a reading of $U_{DC}=0.013V$ you get a total error of

$$\Delta P_{tot} = \pm \left(\Delta P + 5 \frac{mW}{V} * U_{DC}\right) = \pm \left(0.638W + 5 \frac{mW}{V} * 13mV\right) = \pm 0.638065W$$

For the apparent power you get:

$$\Delta S = \pm \left(\frac{\partial S}{\partial U} * \Delta U + \frac{\partial S}{\partial I} * \Delta I \right)$$

$$\Delta S = \pm (I * \Delta U + U * \Delta I) = \pm (0.95A * 0.315V + 230V * 2.35mA) = \pm 0.83975VA$$

Please note that in this case you have to use ΔI_{trms} for ΔI !

If you use external sensors please see the ZES Sensors and Accessories Manual for hints, how to calculate the total uncertainty under this circumstances.

12.1.2 Accuracy of non sinusoidal signals

The standard accuracies are just given for sinusoidal signals. The reason is, that the national standards usually work just with sinusoidal signals.

To estimate the error of non sinusoidal signals you can use the following system.

Let's assume you want to measure a square signal with 5V peak value, 50% duty cycle, no DC value and a frequency of 100Hz.

Miscellaneous LMG450

First the signal has to be divided into its frequency components. Then the errors of the rms-values of each frequency component have to be calculated. The used error is the standard error of reading at the specific frequency according to the technical specification. All these errors have to be added geometrically (because they are rms values with different frequencies). Further on you have to add the error of the measuring range of the fundamental once (once because it includes common errors like offset, ...). With this sum you can calculate the total error.

The values in the columns of the following table are:

Frequency (f / Hz)

rms value at this frequency (U / V)

Percentage error of frequency component according to technical data (% of value)

• Absolute error of frequency component $(\Delta U / mV)$

f/Hz	U/V	Error in % of U	Error ΔU / mV
100	4.501	0.1	4.501
300	1.500	0.1	1.500
500	0.900	0.1	0.900
700	0.636	0.1	0.636
900	0.499	0.1	0.499
1100	0.408	0.2	0.816
1300	0.346	0.2	0.692
1500	0.300	0.2	0.600

For this example only the harmonics from 1 (100Hz) to 15 (1500Hz) have been used. Harmonics of a higher order cause just barely greater errors not affecting the total error very much like shown in the table.

The geometrical sum of all errors results in an error of 5.05mV.

To that you have to add the error of the range (0.1% of 12.5V (peak-value) = 12.5mV).

The total error is 17.55mV which is 0.35% of 5V.

12.2 Function fault

If you think you have found an error or function fault in a LMG450 please fill out the following page and send it to ZES. If you think the measuring result are wrong, please also fill out the second page. For this purpose connect the measuring circuit, freeze the screen with the values and fill out the paper with the frozen values.

On the attached CD you find a tool called 'LMG CONTROL'. One feature of this tool is, that it can store all measuring values and a complete configuration in a report file. You can also use this tool to generate a function fault report.

Miscellaneous LMG450

Function fault at a LMG450					
To:	From:				
	Name:				
Z E S ZIMMER Electronic Systems GmbH	Company:				
Tabaksmühlenweg 30	Street:				
61440 Oberursel	City:				
Germany	Country:				
Tel. ++49 (0)6171 / 628750	Tel:				
Fax ++49 (0)6171 / 52086	Fax:				
Information about the instrument:					
Type Plate:					
Serial number:	Supply Voltage:				
<i>IF/IO</i> Menu: List more					
Version:					
Interface:	ext. programs:				
Process Signal 1/2:	Calibration:				
Flicker:	PQA:				
Harmonic 100:	SYS61K:				
Transient:	TERM-L5:				
extended memory:					
linked values:					
Exact error description:					

Measuring menu **Globals** Cycle: Aver: _____ Wiring: Group A Filter: S_Cpl: _____ Couple: Sync: **Group B** Filter: S_Cpl: _____ Sync: ___ Couple: **Channel 1** Range menu U range: $___V$ I range: U range: auto/manual I range: auto/manual U scale: I scale: Sensor: intern/extern Sensor-Typ, SN: _____ Voltage menu **Current menu** Power menu Utrms: _____ Itrms: P: Uac: Iac: _____ Q: _____ S: ___ Udc: Idc: _____ PF: Upp: Ipp: Upkp: _____ f: Ipkp: _____ Z: Upkn: Ipkn: _____ Rser: _____ Urect: Irect: Ucf: Icf: _____ Xser: ____ Uff: Iff: Iinr: Channel 2 Range menu _____V U range: I range: U range: auto/manual I range: auto/manual U scale: I scale: Sensor: Sensor-Typ, SN: _____ intern/extern Power menu Voltage menu Current menu Utrms: _____ P: Itrms: Uac: Iac: Q:

_____ S:

Idc:

Udc:

Miscellaneous LMG450

Upkn: _ Urect: _ Ucf: _		Ipp: Ipkp Ipkn Irect Icf: Iff: Iinr:	:	f: Z: Rser: Xser:	
Channel	3				
Range m	enu				
U range:		V	I range:		A
U range:	auto/manua	al	I range:	auto/i	manual
U scale:			I scale:		
Sensor:	intern/exte	rn	Sensor-Typ,	SN:	
Voltage :	menu	Curi	rent menu	Power	menu
		Itrms	s:	P:	
		Iac:			
TIda.		Idc:		C.	
T T		Ipp:			
T T 1		Ipkp	·	- ₋	
Upkn: _		Ipkn		7.	
T T .		Irect		ъ	
TT C		Icf:		***	
Uff: _		Iff: Iinr:		-	
Channel Range m	nenu				
U range:		V	I range:		A
U range:	auto/manu	al	I range:	auto/i	manual
U scale:			I scale:		
Sensor:	intern/exte	rn	Sensor-Typ,	SN:	
Voltage	menu	Curi	rent menu	Power	menu
Utrms: _		Itrms	s:	_ P:	
Uac: _		Iac:		_ Q:	
Udc: _		Idc:		_ S:	
Upp: _		Ipp:		_ PF:	
Upkp: _		Ipkp	:	_ f:	
Upkn: _		Ipkn		_ Z:	
Urect: _		Irect	:	_ Rser:	
Ucf: _		Icf:		_ Xser:	
Uff: _		Iff:		_	
		Iinr:		_	

You can directly print out this menus.

Please sketch also the wiring of LMG450 and equipment under test / measuring signals:

Miscellaneous LMG450

12.3 Maintenance

12.3.1 Calibration

With this precision power meter you have a high end measuring instrument. But you can only take advantage of it's performance, if the instrument is well adjusted and calibrated. Especially with the calibration of third party labs there are very often unnecessary problems. If you let the calibration made by any third party calibration lab, please watch following points:

- The reference instruments might have not the required accuracy, especially for active AC power.
 - A very common error is, that reference sources, which some companies call 'calibrator' have not the necessary accuracy to calibrate this instrument. The calibrators are very useful for many hand held multimeters, but are often worthless when calibrating active power. A common candidate for this error is the Fluke 5500A calibrator.
 - Please keep in mind, that the reference instrument should be at least 3 times more accurate than the device under test. If not, the precision power meter calibrates the so called calibrator!
- The reference instrument may be traceable for voltage and current, but it is very rare, that it is traceable for active AC power with the required accuracy. Nevertheless it is common, that calibration labs calibrate active power if only voltage and current are traceable. This happens very often in the context of national calibration services like DKD, UKAS, ... Here it happens regular, that voltage and current are accredited, but not the active power. So this protocols are worthless for active power!

If a calibration is performed by any third party lab, at least following points should be calibrated to ensure a proper function of the instrument:

- Voltage and current of all ranges at a frequency near to 50Hz.
- A representative selection of voltage/current range combinations to ensure a proper power reading

The ZES ZIMMER calibration service offers a traceable calibration of all relevant parameters and meets the requirements of IEC17025. Our active power calibration is directly traceable to PTB (Physikalisch Technische Bundesanstalt in Braunschweig).

A further advantage of our calibration service is, that for the case of a service there are no additional shipping costs and time delays.

12.3.1.1 Requirements for reference instruments

As generally known the references, calibration sources and/or reference power meters, have to be in an accuracy class, which is at least 3 time better than the instrument. An optimal value is from 5 to 10 times better.

For the allowed error of the LMG to be calibrated please refer also to chapter 12.1.1, 'Accuracy of measured and computed values'

12.3.2 Adjustment

The adjustment has to be done at $(23\pm1)^{\circ}$ C.

ZES ZIMMER offers in principle a way to adjust the instruments outside our factory, if some technical preconditions are fulfilled. For further information, please contact sales@zes.com

12.3.3 Zero adjustment of the instrument

The zero settings of the LMG450 can be adjusted without sending the instrument back to the factory. For this purpose remove <u>ALL</u> measuring cables from the instrument and switch to the normal measuring mode. Now short circuit the voltage input (U* and U). Short circuit means, not to connect the inputs with any wire but to connect them as short as possible to get a minimised loop area!

If you want to adjust external sensors connect them, switch to external sensors in the range menu and don't enclose any measuring lead with the sensor.

Warm the instrument up for a minimum of 2h.

Now press **Z-Adj** in the *Misc*. menu (see 4.4.1, 'Misc.').

Answer the warning with *Enter* if you have setup the instrument correctly. After about 1 minute the instrument is adjusted and a message appears.

If you are in doubt about any detail of this adjustment please contact the manufacturer.

This adjustment is active, while the instrument is switched on. If you switch off and on the instrument, the factory values are loaded.

12.3.4 Fans

The air filter of the fan near the power supply socket has to be cleaned (depending on the environment two times per year). To do this remove the shield of the fan. When doing this you should check the correct working of this fan.

Miscellaneous LMG450

12.3.5 Battery

In the instrument is a lithium battery for holding several data. It should be checked after 8 years or when any problems occur. In some instruments the battery is plugged, so it can be exchanged very easy. In other instruments it is soldered, so here it is recommended to exchange the battery in our service department.

12.3.6 Software update

The software of the LMG450 can be updated by the customer. You get the actual software from our homepage http://www.zes.com or directly by ZES. You need a PC and a serial cable to connect COM1 of your PC to COM A of the LMG450. It has to be a 1:1 cable without any crossings or null modem functions, where all wires are connected.

If you start the update software on your PC you will get detailed information how to handle.

12.4 Use with an inverter

The power meters of the e LMG series accord to the protection class 1. A use without an earthed protective conductor is not permitted. Inverters (e.g. 12Vdc to 230Vac) mostly have no protective conductor. In this case the LMG has to be wired with a protective conductor at the rear panel. Refer the safety rules of the working area.

13 Technical data

13.1 General

Display: Colour display, resolution 320x240 Pixel

Mains supply: 85...264V, 47...440Hz, ca. 45W, 2 fuses 5x20mm T1A/250V

IEC127-2/3

Storage temperature: -20°C to $+50^{\circ}\text{C}$

Safety: EN61010-1:2001

Normal environmental condition:

Indoor use, altitude up to 2000m, temperature 5°C to 40°C, maximum relative humidity 80% for temperatures up to 31°C decreasing linearly

to 50% relative humidity at 40°C

Mains supply:

Measurement category II, pollution degree 2

Measuring inputs:

Measurement category III, pollution degree 2

IP20 according EN60529

EMC: EN61326-1:2006

EN61000-3-2:2006 EN61000-3-3:2008

Dimensions: Desktop: 320mm (W) x 148mm (H) x 307mm (D)

19" rack: 63DU x 3HU x 360mm

Weight: 7.5kg

Technical data LMG450

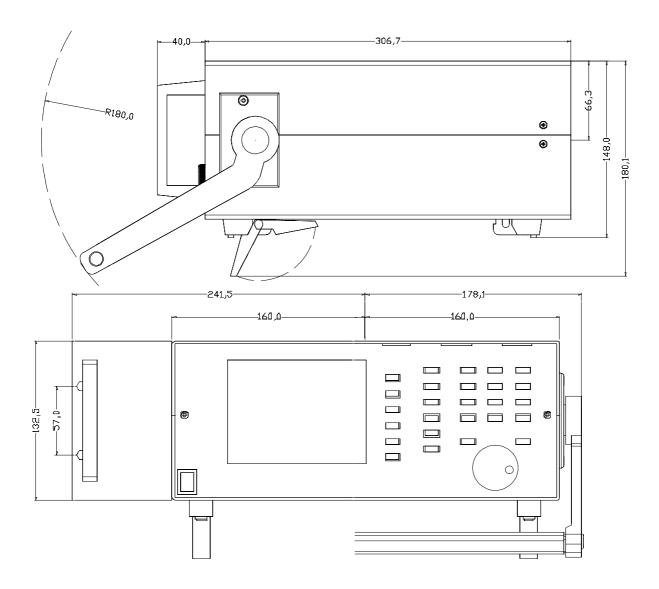


Figure 43: Dimensions of LMG450

In the above picture you see the desktop instrument in combination with the rack mounting kit and the handle bar.

13.2 Display of values

The measured values are displayed with 5 digits. The position of the decimal point is set to the position which is required to display the maximum allowed TRMS value.

If the TRMS value of a measuring channel is lower than 1.5% of the measurable TRMS value of the range, all channel values are displayed as 0.0. For example in the 0.6A current range you get values from 19.500mA...1.875A and 0.000A. This zero rejection can be switched off, see 4.4.1, 'Misc.'

13.3 Measuring channels

13.3.1 Sampling

The sampling is done at all channels with about 50kHz per channel.

13.3.2 Ranges

Voltage ranges

Rated range value / V	6	12.5	25	60	130	250	400	600
Measurable TRMS value / V	7.2	14.4	30	60	130	270	560	720
Permissible peak value / V	12.5	25	50	100	200	400	800	1600

Overload capability 600V continuously, 1500V for 1s

Input resistance $1M\Omega$, 10pFCapacitance against earth 280pF

Common mode error (measured with 100V common mode signal at different frequencies in the 6V range without HF-Rejection filter):

50Hz 0V 5kHz <0.01V 10kHz <0.02V 20kHz <0.05V 100kHz <0.12V

Common mode error (measured with 100V common mode signal at different frequencies in the 6V range with HF-Rejection filter):

50Hz 0V 5kHz <0.01V 10kHz <0.02V 20kHz <0.01V 100kHz 0V

Note!

The 'Measurable TRMS value' is the biggest TRMS value which can be measured. That does not mean that it is allowed to measure with that value, if any security standards define other values!

Current ranges

Rated range value / A	0.6	1.2	2.5	5	10	16
Measurable TRMS value / A	1.3	2.6	5.2	10	18	18
Permissible peak value / A	1.875	3.75	7.5	15	30	60

Overload capability 18A continuously, 50A for 1s, 150A for 20ms

Input resistance Ri $2m\Omega$

Capacitance against earth 10pF

Technical data LMG450

Common mode error (measured with 100V common mode signal at different frequencies in any range without HF-Rejection filter):

50Hz 0mA

5kHz < 0.5mA

10kHz < 1.1mA

20kHz < 2.4mA

100kHz <8.0mA

Common mode error (measured with 100V common mode signal at different frequencies in any range with HF-Rejection filter):

50Hz 0mA 5kHz <0.2mA 10kHz <0.9mA 20kHz <0.6mA 100kHz 0mA

Channel separation

Capacitance between U and I 10pF

Connecting 100V common mode signal at different frequencies to a voltage channel will cause following errors in the adjoining current channels (without HF-Rejection filter):

10kHz 0mA 20kHz <0.6mA 100kHz <2.0mA

Connecting 100V common mode signal at different frequencies to a voltage channel will cause following errors in the adjoining current channels (with HF-Rejection filter):

10kHz 0mA 20kHz 0mA 100kHz 0mA

Connecting 100V common mode signal at different frequencies to a current channel will cause following errors in the adjoining voltage channels (without HF-Rejection filter):

10kHz <0.4mV 20kHz <1.0mV 100kHz <1.3mV

Connecting 100V common mode signal at different frequencies to a current channel will cause following errors in the adjoining voltage channels (with HF-Rejection filter):

10kHz < 0.4mV

20kHz 0mV 100kHz 0mV

Voltage inputs for current measuring with isolating current sensors

Rated range value / V	0.12	0.25	0.5	1	2	4
Measurable TRMS value / V	0.15	0.3	0.6	1.2	2.5	5
Permissible peak value / V	0.25	0.5	1	2	4	8

Overload capability 100V continuously, 250V for 1s

Input resistance $100k\Omega$, 10pF

Common mode error no error per definition, because this input is <u>not</u> isolated from chassis ground, so you can't apply a common mode signal.

13.3.3 Accuracy

An example, how to handle this values, you find in 12.1.1, 'Accuracy of measured and computed values'

Measuring accuracy

The values are in \pm (% of measuring value + % of measuring range)

Frequency/Hz	DC	1Hz-1kHz	1kHz-5kHz	5kHz-20kHz
Voltage	0.2+0.2	0.1+0.1	0.2+0.2	0.3+0.4
Current via direct input	0.4+0.4	0.15+0.1	0.2+0.2	0.5+0.5
Active Power via direct input	0.5+0.5	0.2+0.1	0.3+0.2	0.6+0.5
Current via voltage input	0.2+0.2	0.1+0.1	0.2+0.2	0.3+0.4
Active power via voltage input	0.3+0.3	0.15+0.1	0.3+0.2	0.6+0.5

Just for AC Coupling

Frequency/Hz	4565Hz
Voltage	0.05+0.05
Current via direct input	0.05+0.05
Active Power via direct input	0.07+0.04
Current via voltage input	0.05+0.05
Active power via voltage input	0.07+0.07

With DC coupling you have to use the first table!

Accuracies based on:

- 1. sinusoidal voltages and currents
- 2. ambient temperature (23±3)°C, no additional heating or cooling (i.e. by sunlight or current of air)
- 3. warm up time 1h

Technical data LMG450

4. power range is the product of current and voltage range, $0 \le |\lambda| \le 1$

- 5. Voltage and current are $\geq 10\%$ and $\leq 110\%$ of rated range
- 6. calibration interval 1 year

7. Adjustment was done at 23°C.

Temperature effect: 0.02% of measuring value / K

1.5mA/K DC drift

Influence of coupling mode

Coupling AC: No influence

Coupling AC+DC, DC: Current: additional DC current of up to $\pm (5\text{mA})$

Active Power: additional DC error of $\pm (5\text{mAV}^2/\text{U}_{DC})$

13.3.4 Special transformer adjustment (L45-O12)

This option improves the accuracy of active power measuring under following circumstances:

- 1. AC coupling
- 2. 45...65Hz
- 3. PF>0.01

The accuracy under this condition is \pm (0.07% of reading + 0.02% of range). All other conditions from the last chapter are still valid.

With this option the phase error between voltage and current channel is $<0.012^{\circ}$ at 50Hz. Without this option the phase error is $<0.046^{\circ}$.

13.3.5 Modified voltage channel for 1kV input (L45-O15)

With this option, the maximum allowed rms value of the voltage is 1000V in the 600V range. The exact specification is as follows:

Max. voltage U* vs. U and PE: 1000V working voltage, 1600V peak value of the working

voltage, 1000V transient over-voltages

Max. voltage U vs. PE: 600V/CATII or 1000V/CATII

13.4 ZES current sensors

Most ZES sensors have an EEPROM implemented in which we have stored the name, scaling, ranges, adjustment and delay time of the sensor. The LMG500 recognises automatically, which ZES sensor is connected and sets up the range menu. Further on we correct some of the errors

the sensor produces (transfer error, delay time, ...). So you get the best measuring results with each sensor.

Due to the EEPROM this sensors offer a plug & play solution for your measuring. The usage of the LMG sensor input offers several measuring ranges which increase the dynamic of the connected sensors.

There is a very wide range of sensors available:

- Current clamps, transformers, hall sensors, flux compensated types, flexible Rogowski sensors, shunts, ...
- Accuracies up to <0.01%
- Frequency range from DC to several hundred kHz
- Current range from <<1A up to several kA

For the exact specifications of all this sensors you find a detailed manual on the CD which is delivered together with this manual. If this CD is missing or you have this manual only as PDF file you can request it via email from 'sales@zes.com'.

For hints how to connect several sensors to one channel, please refer to chapter 14.1.2.1, 'Several external sensors in a test bench'.

13.5 Filter

13.5.1 HF Rejection filter

The analogue filter has the following characteristic:

Frequency / Hz	Rejection / dB
10	0.0019
20	0.0005
50	0
100	-0.0004
200	-0.0014
500	-0.0086
1000	-0.0319
2000	-0.1459
5000	-0.8350
10000	-3.16
20000	-14.45
50000	-49.45

Technical data LMG450

13.6 prCE Harmonics

Relative deviation between f_1 and frequency f_{syn} , to which the sampling rate is synchronised is <0.015% of f_1 under steady-state conditions.

Accuracy

According EN61000-4-7 Ed. 2.0:

U: $U_m \ge 1\% U_{nom}$: $\pm 5\% U_m$

 $U_{m} < 1\% U_{nom}$: $\pm 0.05\% U_{nom}$

I: $I_{m} \ge 3\% I_{nom}$: $\pm 5\% I_{m}$

 $I_{m} < 3\% I_{nom}$: $\pm 0.15\% I_{nom}$

With

_m = measuring value

_{nom} = nominal value of the range

Please note

The influence of the HF-Rejection filter is compensated for the amplitudes of the harmonics. The values for U, I and P are <u>not</u> recalculated from the harmonics, but are calculated from the sampling values to get for example interharmonics and components with higher frequencies which are not captured by the harmonics. So it is not possible to compensate the influence of the filters for this values! For the same reason this values can also be much bigger than the values which can be derived from the harmonics (depending on the signal).

13.7 CE Flicker

Accuracy

Flickermeter: ±5% acording to EN61000-4-15

d-meter: $\pm 0.15\%$ of nominal voltage according to EN61000-3-3

13.8 HARM100 Mode

Amplitude error

The error of the harmonic with the biggest amount H_{max} (usually the fundamental) and of the DC part (H_{00}) is calculated as if each part is measured alone (refer error specifications of the normal measuring mode).

The errors of the harmonics $(H_{01}, H_{02}, ...)$ except H_{max} is calculated as follows:

 $\pm (0.5*error_{Hmax} + 0.02\% \text{ from } H_{max}/kHz)$

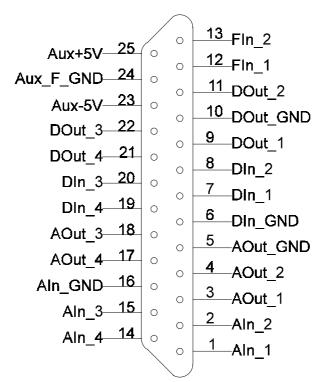
This errors are valid if the amplitude of the harmonics are higher than 0.1% of the full scale peak value.

Phase error

 $\pm (0.15^{\circ} + 0.25^{\circ} / \text{kHz})$

This errors are valid if the amplitude of the harmonics are higher than 0.1% of the full scale peak value.

13.9 Processing signal interface (option L45-O3)


The processing signal interface can have one or two boards, each with the same inputs and outputs. The following functional groups are isolated against each other (for details please refer 14.6, 'Functional block diagram processing signal interface'). The allowed working voltage is 25V between the groups. The testing voltage is 500V.

The analogue inputs and outputs have nominal $\pm 10V$ signal range, but in fact they are able to handle 11V resp. 12V.

- Four analogue outputs with ±10V. The outputs are updated with each measuring cycle for normal values. The four analogue outputs have one common ground (AOut_GND) which is isolated from all other grounds.
- Four analogue inputs with ±10V. This values are displayed after each measuring cycle. The four analogue inputs have one common ground (AIn_GND) which is isolated from all other grounds.
- Four digital outputs (open collector outputs). They are updated with each measuring cycle. The four digital outputs have one common ground (DOut_GND) which is isolated from all other grounds.
- Four digital inputs. The four digital inputs have one common ground (DIn_GND) which is isolated from all other grounds.
- Two frequency inputs. They can measure frequency and direction of a rotation speed converter. The two frequency inputs have one common ground which is isolated from all other grounds but common to the ground of the auxiliary supply (Aux_F_GND). F_In1 is used to measure the frequency, F_In2 to detect the direction.
- Auxiliary supply. Here you can get an auxiliary voltage of ±5V. The ground is common with the ground of the frequency inputs (Aux_F_GND).

Technical data LMG450

The connector has the following pinout:

Figure 44: Processing Signal Interface Connector

For information how to setup this values see 4.4.2.2, 'Processing signal interface'.

13.9.1 Analogue inputs

Resolution: 16Bit

Accuracy: $\pm (0.05\% \text{ of measuring value} + 0.05\% \text{ of full scale})$

Input signal: $\pm 12V$

Overload capability: -25...+25V

Input resistance: $100k\Omega$

13.9.2 Analogue outputs

Update rate: once per measuring cycle

Resolution: 16Bit

Accuracy: $\pm (0.05\% \text{ of measuring value} + 0.05\% \text{ of full scale})$

Output signal: ±11V

Output load: load resistance $> 2k\Omega$

13.9.3 Digital inputs

Input signal: U_{low}max=1V, U_{high}min=4V@2mA, U_{high}max=60V@3mA

13.9.4 Frequency inputs

Input signal: U_{low}max=1V, U_{high}min=4V, U_{high}max=10V

Input resistance: $1M\Omega$

Maximum frequency: 5MHz

Accuracy: ± 100 ppm of measuring value

13.9.5 Digital outputs

Open collector outputs. See 14.6, 'Functional block diagram processing signal interface'

Output high impedance: max 30V@100µA

Output low impedance: max. 1.5V@100mA

13.9.6 Auxiliary supply

Output voltage: ±5V, 10% @ 50mA

13.9.7 Frequency/direction input

Incremental sensors without direction information

Connect them to FIn_1 only. Let FIn_2 open!

Incremental sensors with direction information

Connect the frequency track (usually track A) to FIn_1.

Connect the direction track (usually track B) to FIn_2.

A <u>positive</u> frequency is displayed, if the direction signal is high at the rising edge of the frequency signal.

A <u>negative</u> frequency is displayed, if the direction signal is low at the rising edge of the frequency signal.

Technical data LMG450

If this is opposite to what you want, change the tracks or use a negative frequency scaling.

13.10 Timebase

The timebase which controls the energy measuring and the internal clock has an accuracy of ± 25 ppm.

13.11 Frequency measuring

0.05Hz...20kHz, ±100ppm of measuring value

13.12 Scope memory

Size: 65536 words: 1/3 of this for each power channel. This 1/3 is for u, i and p of each

power channel together

With option L45-O5 or L45-O7 :

4194304 words: 1/3 of this for each power channel. This 1/3 is for u, i and p of each

power channel together

14 System design

14.1 Further connectors

14.1.1 External Synchronisation (Sync.)

14.1.1.1 Sync. connector

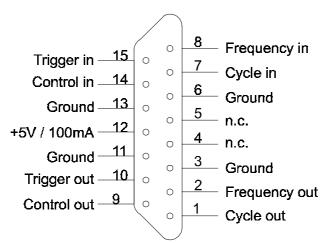


Figure 45: Sync. connector

14.1.1.2 Pin configuration of the "Sync. connector"

For the connection a 15 pole D-Sub plug with the following pin configuration is necessary:

Pin	Meaning	Pin	Meaning
1	Cycle out	9	Control out
2	Frequency out	10	Trigger out
3	Ground	11	Ground
4	Do not connect!	12	+5V / 100mA
5	Do not connect!	13	Ground
6	Ground	14	Control in
7	Cycle in	15	Trigger in
8	Frequency in		

14.1.1.3 Signal Level

All in- and outputs have CMOS - Drivers with 5V level. The supply of external sensors / drivers is provided at pin 12 with 5V and an Imax of 100mA. All in - and outputs are low active (0V), what means the idle level is high (+5V).

System design LMG450

14.1.1.4 Function of the signals

Frequency in

Maximum 500kHz frequency synchronous to the frequency of the measured signal. If the LMG is set to Ext. Sync. this frequency is used for synchronisation. The rising edge of this signal replaces the positive zero crossing of the usual sync detector.

Frequency out

Measured frequency of group A, depending on the synchronisation source of the group.

Control in

Control of the energy measurement. With the next high low transition the integration is reset (if summing mode is inactive) and started. The integration stops only at transitions from low to high. The functionality of the transitions:

```
\begin{array}{ccc} \text{high} & \rightarrow & \text{low} & \text{start key} \\ \text{low} & \rightarrow & \text{high} & \text{stop key} \end{array}
```

Control out

Status of the energy measurement high level if the integration is stopped, low level if the integration is running.

Cycle in

Control of the measurement cycle. The period must be longer than 50ms and shorter than 60 seconds and longer than the period of the measured signal. The pulse duty factor can be 50%. Example: To measure a 5Hz signal the measurement cycle must be bigger than 200ms. Attention: Use only with valid control periods otherwise there can be a system fault of the meters. This input is normally not used.

The rising edge of this signal finishes one cycle and starts a new one.

Cycle out

Pulse for about 10µs per measurement cycle.

Trigger in/out

not used.

14.1.1.5 Synchronised measurements of two LMG450

14.1.1.5.1 General

Two LMG450 may measure synchronous if they are connected with the option L45-Z13 "Master-Slave cable". Because of this the measurement of even 8 phases in four groups is possible. In the following documentation the groups are named: group A1 and B1 are the groups of the first LMG450. Group A2 and B2 are the groups of the second meter.

14.1.1.5.2 Connection of the meters

The Master-Slave cable must be fitted to the "Sync"-sockets of both meters. The cable is symmetric, so there is no wiring direction.

14.1.1.5.3 Pin configuration of the Master-Slave cable L45-Z13:

Plug 1	Plug 2	Signal	ST1	ST2
1	7	Cycle	Out	In
2	8	Frequency	Out	In
9	14	Control	Out	In
10	15	Trigger	Out	In
7	1	Cycle	In	Out
8	2	Frequency	In	Out
14	9	Control	In	Out
15	10	Trigger	In	Out

Ground and Screen are connected to pin 3 of both plugs.

Synchronisation stages, Set-up of the Meters

The synchronisation of the measurement can be done in different stages. Each stage is independent to all others.

A) Synchronisation of the measurement signal

This stage has no master-slave functionality. The inputs "Frequency in" are connected with the synchronisation frequency of group A of the other power meter. The adjustments of this parameter can be set separately for each group in every meter in the *Measure* menu with *Sync*. Because of this all groups can synchronise the measuring of one common signal. Example for the settings:

Group A1 of the first meter is set to U1.

Group A2 of the second meter is set to Ext., by this the synchronisation is set to U1 of the first meter.

System design LMG450

Group B1 is set to Ext., by this it gets the synchronisation frequency via A2 what means U1. Group B2 is set to Ext., by this it gets the synchronisation frequency of A1 what means U1.

If the groups A of both meters are set to Ext. there is no common synchronisation frequency and the measuring is asynchronous.

B) Synchronisation of the measuring cycle

This stage has a master-slave functionality!

For a simultaneous generation of the measuring values of two LMG the measuring cycle of the meters has to be exactly the same. Therefore the cycle time of the slave meter can be set to 0ms in the *Measure* (refer 5.1.1 Globals tab) menu.

In the status bar "0 Ext" is shown and the green bar flashes every second.

The measuring values of both meters are now generated at exactly the same moment and a comparison of the values is possible.

Because of the master-slave meaning this adjustment can only be set in one meter. If both meters are set to 0ms the measurement stops!

C) Synchronisation of the energy measurement

This stage has no master-slave functionality but a control of a master LMG is recommended (if existing from the last top).

The energy measurement of both meters has to be set to the same mode and should be reset (refer 5.4.5.1 Integration menu).

The measurement can be started and stopped mutual with the keys "Start" and "Stop". A remote controlled measurement is also possible (see the following section)

D) External synchronisation signal

If the measurement should be synchronised to an additional external signal, this signal has to be connected to the pins of the D-Sub plug. The plug fitted to the meter which should be synchronised external has to be opened and the "Freq" and "Control" inputs must be disconnected. After this the external signal can be connected to this inputs.

If the signals are connected to the master LMG also the slave LMG can use them, because the master outputs are still connected to slave inputs:

Pin 8 Input for the external synchronisation frequency

Pin 7 Input for the cycle

Pin 14 Input for the control signal for energy metering

The connections at this pins of the master plug can be unsoldered and own signals can be connected.

Ground should be connected to Pin 6, 11 or 13.

14.1.2 External Current Sensor

You can connect your own current sensor to the external current sensor connector:

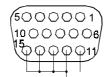


Figure 46: External current sensor connector

Connector pin assignment:

Pin No.	Comment
6	-12V / max. 100mA
7	+12V / max. 100mA
8	For ZES sensors, only!
9	For ZES sensors, only!
10	For ZES sensors, only!
11	sensor signal
12	ground
13	ground
14	ground
15	ground

Please make sure, that all 4 ground pins are connected. All other pins should be left open.

All ZES sensors have an EEPROM implemented in which we have stored the name, scaling, ranges, adjustment and delay time of the sensor. The LMG450 recognises automatically, which ZES sensor is connected and sets up the range menu. Further on we correct some of the errors the sensor produces (transfer error, delay time, ...). So you get the best measuring results with each sensor.

14.1.2.1 Several external sensors in a test bench

A common situation in test benches is, that different sensors have to be connected, controlled by a program. In this case the relevant signals have to be redirected, e.g. by a relais. Relevant are <u>all</u> 10 signals of the pins 6 to 15!

Important!

First you have to disconnect an existing sensor.

Secondly you have to wait for at least 3s.

Now you can connect the new sensor.

System design LMG450

14.2 Functional block diagram LMG450

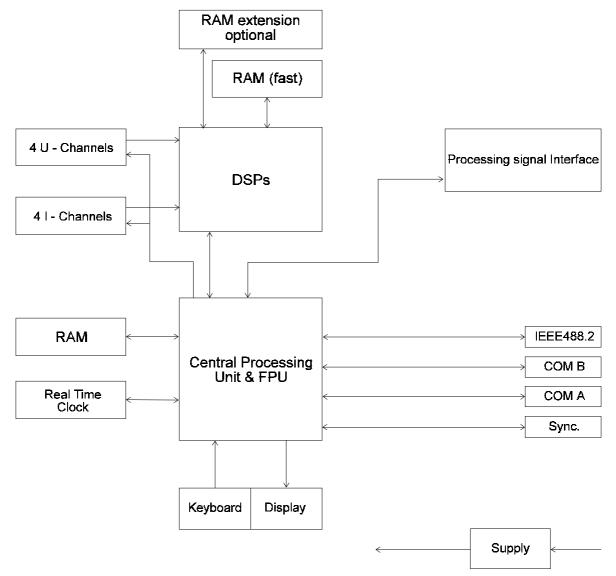


Figure 47: Functional block diagram LMG450

14.3 Functional block diagram voltage channels

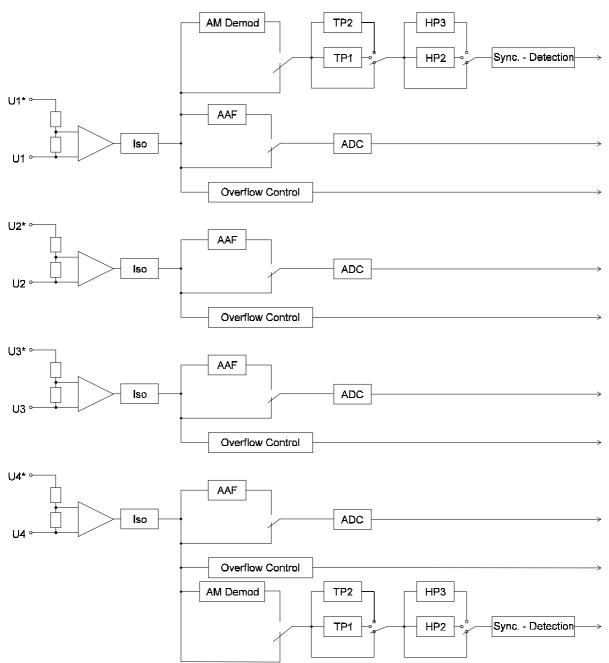


Figure 48: Functional block diagram voltage channels

System design LMG450

14.4 Functional block diagram current channels

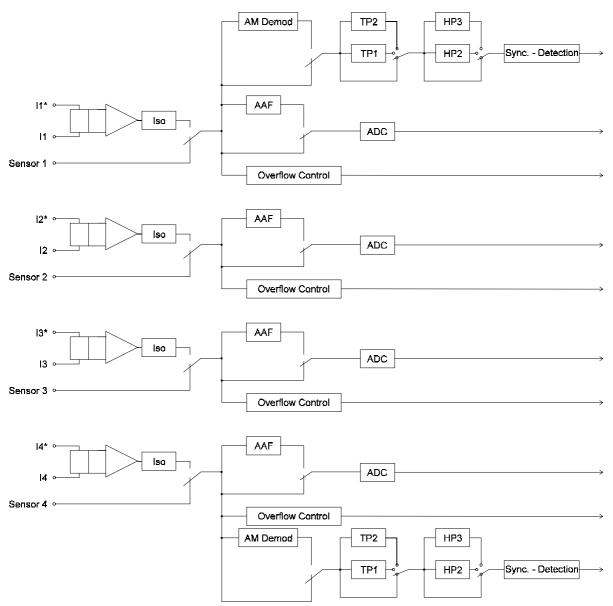


Figure 49: Functional block diagram current channels

14.5 Functional block diagram computing unit

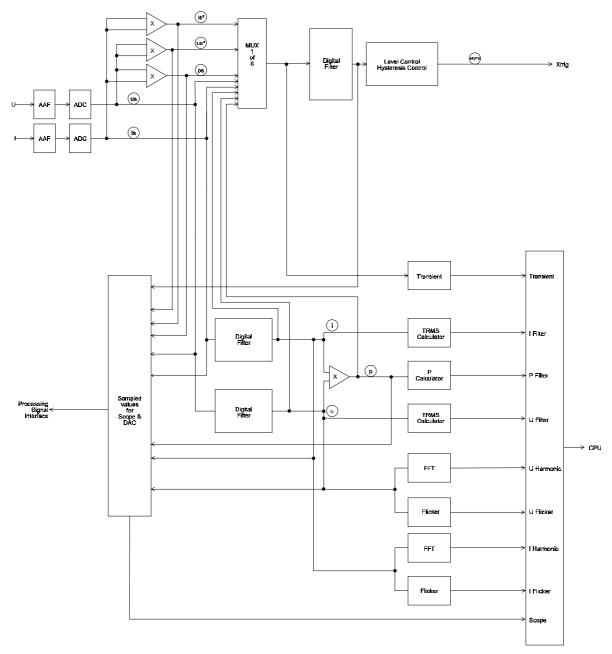


Figure 50: Functional block diagram computing unit

The labels in the circles define the signals you can select in different menus, for example extended trigger, scope, ...

System design LMG450

14.6 Functional block diagram processing signal interface

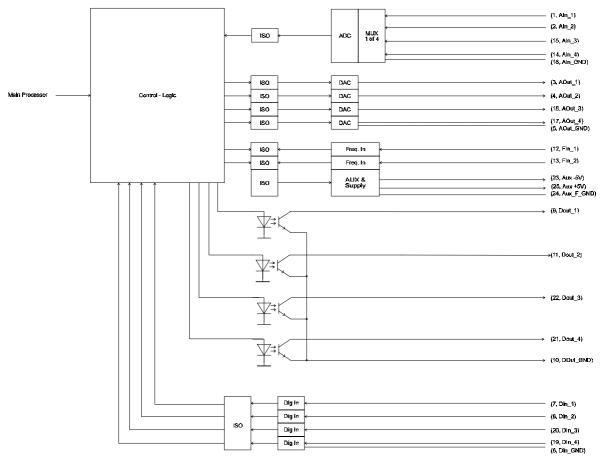


Figure 51: Functional block diagram processing signal interface

15 Glossary

Catchword	Meaning
100 Harmonics	Mode in which 99 harmonics of U, I and P are calculated.
Α	
AAF	⇒ Anti Aliasing Filter.
AC	Alternating current; instantaneous values of voltage and
	current are time depending signals which have positive and
	negative values.
AC coupling	Used to remove the DC parts of a signal by using a high pass
	filter.
AC+DC coupling	Couples the complete signal without rejecting any parts.
Accuracy	Declaration of the errors which will be made in measuring.
Active energy	Energy which is consumpted by the (usually ohmic) load.
Active power	Power which is consumpted in the (usually ohmic) load.
Actual flicker level Pmom	⇒ Instantaneous flicker level.
Aliasing	Distortion caused by signal parts, which are created through
	the violation of the sampling (Nyquist, Shannon) theorem
	(bandwidth ≥ ½ sampling frequency). This can be prevented
	by using ⇒ Anti Aliasing Filter.
Allowed limits	Limits which are declared in standards.
AM	Amplitude modulation; one signal is multiplied with another
	one; A typical example is a rapid fire control, where a 50Hz
	sine wave is modulated with a slower rectangular signal.
Amplitude error	Error in the modulus of a measuring result.
Amplitude modulation	\Rightarrow AM.
Analogue I/O	Analogue input and output, the LMG series supplies four
	separated inputs and outputs for analogue signals: 0-10V.
Analogue Input	⇒ Analogue I/O.
Analogue Output	⇒ Analogue I/O.
AND Condition Register	Register in which a flag is set, if two conditions are true.
Anti-Aliasing-Filter	Filter which cuts off signal parts which might produce
	aliasing.
Apparent energy	Energy which seems to be consumpted by the load; ⇒
	Apparent power. It is the integration of the apparent power.
Apparent power	Power which seems to be consumpted; it is calculated by
	U _{TRMS} * I _{TRMS} without taking care on the phase angle

Catchword	Meaning
	between them.
Application note	Several measuring or wiring problems are described in
	application notes of ZES ZIMMER; available also at the
	ZES homepage: www.zes.com.
Arbitrary block response data	⇒ Defined length arbitrary block response data.
ASCII format	Format which bases on the American standard code of
	information interchange with 128 symbols.
Autorange	Function which changes the ranges of the current and
	voltage inputs automatically, depending on the signal.
Auxiliary transducer supply	Some transducers need a separate supply. The LMG can
	provide this supply.
Averaged values	This values are averaged over a constant number of
	measuring cycles.
В	
Bandwidth	Frequency range from the lowest to the highest frequency,
	which can be measured or used.
Bargraph	Display of the values symbolised by bars; A typical bargraph
	is the spectrum display.
Basic wave	The signal part with the lowest frequency in the signal
	(except DC part).
Baud rate	Transfer speed of the bits in a serial data stream.
Binary	Numerical system based only on to values: 0 and 1, the data
	is represented only by this two binary values.
Bitmap	Format of drawing or photos.
Burden	Total load of a current transducer including wiring and input
	resistance.
С	
Calibration according to ISO9000	Testing of the meter accuracy traceable to national or
	international standards.
Capacitance against earth	Each channel has a capacitance against the earth; this can
	cause systematically measuring errors which can be
	corrected.
CAT II	Overvoltage class for usage in normal building nets.
CAT III	Overvoltage class for usage at the PCC (point of common
	coupling)
CE harmonics	Harmonics measured according to EN61000-3-2; this test is
	requested for the CE sign.
CE-Flicker	Flicker measured according to EN61000-3-3; this test is

Catchword	Meaning
	requested for the CE sign.
Channel	Hardware which acts as an interface between the test circuit
	and the instrument, these are U, I and P channels (P=U*I).
Charge	The integration of the current over the time; this charge can
	be stored for example in an accumulator the unit is Ah.
Class A, B, C, D	Different kinds of equipment under test for EN61000-3-2
	tests are assigned to this test classes.
COM interfaces	Serial Interface, mostly 9 pole SUB-D socket or 25 pole
	SUB-D socket.
Comma separated	Data format in which each value is separated by a ','.
Command set	A couple of commands to remote control the instrument
Common mode rejection	Relation of the displayed value to a common floating signal
	on all inputs of a measuring channel; a high common mode
	rejection is necessary for high accuracy.
Condition instruction	Instruction which will only be executed if a condition has
	been fulfilled.
Constant	Value which will not change over time.
Continuous measuring	Measuring without any gaps.
Core parameter measuring circuit	The core parameters, like hysteresis and magnetic flux, can
	be determined through power measuring.
Correct current	You can only measure one of these parameters in the correct
Correct voltage measuring	way, because the impedance of the voltage / current channel
	has an influence on the measuring channel. This is a
	systematically measuring error, which can be corrected.
Coupling	This defines which parts of a signal are fed into the next
	stage. \Rightarrow AC coupling.
Crest factor	Ratio of peak value to TRMS value; very important when
	using analogue instruments.
Current clamp	Tool to measure currents; work like a removable
	transformer.
Current transducer	Similar to current clamps, but placed unremovable in the
	measurement circuit.
Cursor	Representation of the place on which the next text input will
	follow; in graphics the cursor marks a special point of the
	waveform.
Custom menu	Menu defined by the customer himself.
Cycle time	Time which defines a measuring cycle must be higher than
	the period time of the basic wave.
D	

Catchword	Meaning	
D. U. T.	'Device under test': equipment which should be measured.	
Data output format	Format which is used to transfer data from the meter to a PC	
	or data logger.	
DC value	'Direct current'; signal without alternating components. Thi	
	signal is constant over the time.	
Default parameters	Parameters defined by the manufacturer; the instrument is	
	set to this parameters when it leaves the factory.	
Defined length arbitrary block	Data transfer in blocks with a defined length and random	
response data	contents inside the blocks; there can be for example the \Rightarrow	
	EOS character which will be interpreted as data instead of	
	EOS. The fastest way to get data.	
Demodulation	Inverse function to ⇒ modulation; remove the carrier and	
	you get the signal you want.	
Desired integration time	Time in which the power is integrated, set by the user.	
Device	Every meter or equipment take place in the measurement	
	(Printer, PC).	
Device under test	⇒ D. U. T.	
DFT algorithm	Discrete Fourier transformation; operation with discrete	
	values using the Fourier integral to get the harmonics of a	
	signal.	
Digital filter	Filter built up with digital components and software.	
Digital Input	Like ⇒ Analogue inputs the LMG series provides digital	
	inputs, to read external states.	
Digital Output	Like ⇒ Analogue outputs the LMG series provides digital	
	outputs, which can be used to signalise states (e.g. alarm	
	outputs).	
DIP switches	Small hardware switches to set up a meter parameter, like	
	communication speed.	
Direction input	Input for motor testing to measure the rotary direction of the	
	motor.	
Dot joiner	Connects the dots of the measured graph; it improves the	
	look of a graph.	
E		
E. U. T.	⇒ D. U. T.	
Echo	Repetition of characters sent via the RS232 to the	
	instrument.	
Edit line	Line in which you can change a value or text.	
Efficiency measurement	Efficiency is the relation between the output power and the	
·	1	

Catchword	Meaning	
	input power of an E. U. T.	
EN61000-3-2, EN61000-4-7	Standards which describe the harmonic measuring	
EN61000-3-3, EN61000-4-15	Standards which describe the flicker measuring.	
End of string character	' <lf>', '<cr>, <cr><lf>' are examples for EOS characters.</lf></cr></cr></lf>	
Energy	Integration of the power which is consumpted by a	
	consumer or a device in a defined time.	
envelope	It is the curve which covers a mixed frequency signal	
	connecting the peak values of the fast frequency; a curve	
	defined by EN61000-3-2 to define if a device belongs to	
	Class D or not.	
EOS	⇒ End of string.	
Equipment under test	⇒ D. U. T.	
ESC key	Key used to cancel an entering mode and to quit an error	
	message.	
Extended Trigger	Mode in which the trigger conditions can be set up <u>very</u>	
	differentiated to measure even modulated signal.	
External current transformer	Device to transform high currents to lower ones.	
External shunt	Changes currents into voltage with defined ratio.	
External synchronisation jack	Input for an external synchronisation source.	
F		
Falling edge	Opposite of rising edge; the logic signal turns from the high	
	potential to the lower one.	
FIFO	First in first out; method how the in- and output of memory	
	is handled.	
Filter	Device which cuts off frequencies which are not useful; e.g.	
	high pass filter cuts off low frequencies.	
Flicker meter	Device to measure flicker levels.	
Fluctuating harmonics	Harmonics not constant over time.	
Form factor	Ratio of TRMS value to rectified value; older meters could	
	only measure the rectified value and multiply it with the form	
	factor to get the TRMS value. The problem is, that the form	
	factor depends on the wave form. So with other wave form	
	you get an error. Modern instruments like the LMGs	
	measure independent to the form factor, so you measure	
	always correct.	
Formula editor	Here you can set up formulas which will calculate different	
	parameters from the measured values.	
Freeze	The display values are not updated any more.	

Catchword	Meaning	
Frequency	Speed in which the period of an alternating signal repeats.	
Frequency divider	Changes a high frequency into lower frequency by division	
	with an integer number.	
Frequency domain view	The signal is shown as spectrum over the frequency.	
Frequency range	⇒ Bandwidth.	
Full scale value	Highest measurable instantaneous value in the chosen range.	
Fundamental	⇒ Basic wave.	
G		
GPIB interface	General Purpose Interface Bus socket to transfer data from	
	meter to PC and opposite.	
Graphical display	Representation of the measured values via time or	
	frequency.	
H		
Half wave value	Values measured over the half time of the signals period.	
Harm100	⇒ 100 Harmonics.	
Harmonic analyser	Device to measure harmonics.	
Harmonic order	Describes which order the harmonic has; e.g. of a 50Hz	
	signal the order of the 100Hz harmonic is 2, its the second	
	harmonic.	
High impedance state	The digital output has a high impedance; the transistor is in	
	blocking mode.	
Hyperterminal	Software to exchange data between a PC and a device;	
	included in Microsoft Windows.	
Hysteresis	Difference between the switching level of the rising signal to	
	the switching level of the falling signal.	
I		
I/C indication	Indication if the load is inductive or capacitive.	
Identifier	Text string representing a measuring value.	
IEC61000-3-2, 2-3	⇒ EN61000-3-2.	
IEC61000-4-7, -4-15	⇒ EN61000.	
IEEE488.2 interface	⇒ GPIB interface.	
IF/IO	Key for the set - up menus of interface and processing signal	
	interface.	
Inaccuracy of display	Because of the limited numbers on the display the displayed	
	values have an error caused by the display (this is always ± 1	
	digit).	
InCa flag	Flag which is set depending if the load is inductive or	

Fixed time period. Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed < f>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h.	Catchword	Meaning	
Very high current at the start of a device or appliance; this can be 5 100 times bigger than the current at normal operation. Instantaneous flicker level		capacitive.	
can be 5 100 times bigger than the current at normal operation. Instantaneous flicker level Time-dependent output signal of a flickermeter (output 5), which simulates an actual reaction of men's brain to the variations of light brightness caused by fluctuation of the supply voltage. Instantaneous value The value of a signal at one point of time. Int. Time Interval time; for example for integration. Int. Value Interval value; they are measured while the ⇒ Int. Time. Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. Standard to guarantee the quality of devices or appliances. Level Height of a value. Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨I♭⟩, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies.	Input resistance Ri	Resistance of the input of the measuring channel.	
Instantaneous flicker level Time-dependent output signal of a flickermeter (output 5), which simulates an actual reaction of men's brain to the variations of light brightness caused by fluctuation of the supply voltage. Instantaneous value The value of a signal at one point of time. Int. Time Interval time; for example for integration. Int. Value Interval value; they are measured while the ⇒ Int. Time. Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. ISO9000 Standard to guarantee the quality of devices or appliances. Level Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. ∠(f⊳, hex)A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logainthmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies.	Inrush current	Very high current at the start of a device or appliance; this	
Time-dependent output signal of a flickermeter (output 5), which simulates an actual reaction of men's brain to the variations of light brightness caused by fluctuation of the supply voltage. Instantaneous value The value of a signal at one point of time. Int. Time Interval time; for example for integration. Int. Value Interval value; they are measured while the ⇒ Int. Time. Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. ISO9000 Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, R\$232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨If>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.		can be 5 100 times bigger than the current at normal	
which simulates an actual reaction of men's brain to the variations of light brightness caused by fluctuation of the supply voltage. Instantaneous value The value of a signal at one point of time. Int. Time Interval time; for example for integration. Int. Value Interval value; they are measured while the ⇒ Int. Time. Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed - If s, hexOA, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.		operation.	
variations of light brightness caused by fluctuation of the supply voltage. Instantaneous value The value of a signal at one point of time. Int. Time Interval time; for example for integration. Int. Value Interval value; they are measured while the ⇒ Int. Time. Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨If>, hexOA, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Inner area of a circle is a loop area. Cuts off high frequencies.	Instantaneous flicker level	Time-dependent output signal of a flickermeter (output 5),	
supply voltage. Instantaneous value The value of a signal at one point of time. Int. Time Interval time; for example for integration. Int. Value Interval value; they are measured while the ⇒ Int. Time. Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. Iso9000 Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨1 ▷, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.		which simulates an actual reaction of men's brain to the	
Instantaneous value Interval time; for example for integration. Int. Time Interval time; for example for integration. Int. Value Interval value; they are measured while the ⇒ Int. Time. Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. Iso9000 Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed		variations of light brightness caused by fluctuation of the	
Int. Time Interval time; for example for integration. Int. Value Interval value; they are measured while the ⇒ Int. Time. Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨1f>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Inner area of a circle is a loop area. Cuts off high frequencies. M		supply voltage.	
Int. Value Interval value; they are measured while the ⇒ Int. Time. Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨I♭, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Inner area of a circle is a loop area. Cuts off high frequencies. M	Instantaneous value	The value of a signal at one point of time.	
Integer number Number without decimal position. Integration mode Mode in which the energy is calculated. Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. ISO9000 Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨If>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies.	Int. Time	Interval time; for example for integration.	
Integration mode Integration mode Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. ISO9000 Standard to guarantee the quality of devices or appliances. Level Height of a value. Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Border of a value. Limit Border of a value. Linefeed ⟨If>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies. M	Int. Value	Interval value; they are measured while the \Rightarrow Int. Time.	
Interface Adapter for the connection between two devices. Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. ISO9000 Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨If>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies. M	Integer number	Number without decimal position.	
Interharmonic Sinusoidal components with a frequency which is not an integer time of the fundamental. Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. ISO9000 Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨If>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.	Integration mode	Mode in which the energy is calculated.	
integer time of the fundamental. Like the PC speaker; to signalise errors. Fixed time period. Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨If⟩, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies. M	Interface	Adapter for the connection between two devices.	
Internal beeper Like the PC speaker; to signalise errors. Interval Fixed time period. ISO9000 Standard to guarantee the quality of devices or appliances. L Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed <if>>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.</if>	Interharmonic	Sinusoidal components with a frequency which is not an	
Interval ISO9000 Standard to guarantee the quality of devices or appliances. Level Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨Ir⟩, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies. M		integer time of the fundamental.	
Standard to guarantee the quality of devices or appliances. Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed ⟨If>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies. M	Internal beeper	Like the PC speaker; to signalise errors.	
Level Height of a value. Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed < f>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies. M	Interval	Fixed time period.	
Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed <lf>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies. M</lf>	ISO9000	Standard to guarantee the quality of devices or appliances.	
Logical devices Log or remote; if log printer, RS232 or MCM is meant, is the question of the physical device. Limit Border of a value. Linefeed <lf>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies. M</lf>	L		
the question of the physical device. Limit Border of a value. Alf>, hexOA, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.	Level	Height of a value.	
Limit Border of a value. Linefeed	Logical devices	Log or remote; if log printer, RS232 or MCM is meant, is	
Linefeed <if>>, hex0A, dec10; jump to the next line; historical from a typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies. M</if>		the question of the physical device.	
typewriter, is the most common ⇒ EOS character. Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies. M	Limit	Border of a value.	
Local In this mode the LMG can be controlled directly by the user at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies. M	Linefeed	<lf>, hex0A, dec10; jump to the next line; historical from a</lf>	
at its keyboard; ⇒ Remote control. Logarithmic display Display scaled with logarithmic axis. Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.		typewriter, is the most common \Rightarrow EOS character.	
Logarithmic display Display scaled with logarithmic axis. Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.	Local	In this mode the LMG can be controlled directly by the user	
Logging Store data to memory, printer or any other storage device. Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies.		at its keyboard; \Rightarrow Remote control.	
Long number 4 Bytes. Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies.	Logarithmic display	Display scaled with logarithmic axis.	
Long term flicker level Plt A result of weighted averaging of short term flicker levels over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies.	Logging	Store data to memory, printer or any other storage device.	
over a time period which typically equals to 2h. Loop area Inner area of a circle is a loop area. Cuts off high frequencies. M	Long number	4 Bytes.	
Loop area Inner area of a circle is a loop area. Low-Pass Filter Cuts off high frequencies. M	Long term flicker level Plt	A result of weighted averaging of short term flicker levels	
Low-Pass Filter Cuts off high frequencies. M		over a time period which typically equals to 2h.	
M	Loop area	Inner area of a circle is a loop area.	
	Low-Pass Filter	Cuts off high frequencies.	
Mains Line supply.	M		
·	Mains	Line supply.	

Catchword	Meaning	
Mains switch	Switch to start up the instrument.	
Manual range	The range settings have to be done by the user.	
Measuring converter	Adapter to connect a meter to the \Rightarrow D. U. T.	
Measuring cycle	Cycle set up from the user. After this time the meter	
	calculates new values. The exact time depends on the	
	synchronisation frequency.	
Measuring settings	All parameters of the meter which influence the	
	measurement.	
Memory card	Random access memory card to store data.	
Menu	The whole measurement settings are divided in menus to get	
	a better survey.	
Miscellaneous	In this menu you can set up several parameters which have	
	no direct influence on the power measurement, like contrast	
	time and date.	
Multimeter	Meter which can measure several values like voltage, current	
	and resistance.	
N		
Nibble	Half of a byte; upper or lower 4bit.	
Noise	Usually random signals with a high bandwidth which are	
	superposed to the useful signal.	
Nondecimal numeric program data	Data which can be represented as string instead of a number;	
	e. g. 'Cont on' instead of 'Cont 1'.	
Non-linear component losses	Losses caused by non linear loads like inductivities or	
	capacitors or amplifier circuits.	
Null modem	Type of serial connection between a PC and another device;	
	the connection cable has two crossed conductor pairs.	
0		
Open collector outputs	Passive outputs where the user has access to the collector of	
	the output transistor. You have to connect an external	
	voltage supply to this collector to use the output.	
Operator	Instruction which is taken into the calculation: +, -, *, /.	
Option Key	A string which can be used to implement software options	
	when the LMG is at the customer.	
OR Condition Register	Register which becomes true if an or condition is fulfilled.	
Order	⇒ Harmonic order.	
Overload capability	A value how far a channel can be overloaded for a special	
	time.	
Overload condition	The instrument is in overload condition while the applied	

Catchword	Meaning	
	signal is too big for the selected range.	
Р		
Packed	Data are transferred binary instead of ASCII format	
Parallel interface	⇒ Serial interface; here the data is transferred in parallel.	
Parity	Even or odd number of 1's in a binary data block; The LMG	
	works without parity.	
Parsing	The LMG tries to interpret a formula or interface string and	
	to react correctly.	
Partial odd harmonic current	The harmonic content of order 21, 23	
PCMCIA memory cards	⇒ Memory card; PCMCIA is the old name for the PC -	
	Card standard.	
Peak current ranges	Ranges with quiet small allowed TRMS values (because of	
	the heating up of the shunt) but very big allowed peak	
	values; very useful to measure \Rightarrow Inrush currents.	
Peak value	Value measured from the zero line to the highest peak of the	
	signal.	
Peak-peak value	Measured from the lowest to the highest peak of a signal.	
Periodic integration mode	In this mode the integration interval is repeated periodically.	
Phase	Conductor of the high potential; typically marked with L.	
Phase angles	Usually the angle between current and voltage.	
Phase error	The error in power caused by an additional phase shift in the	
	measuring equipment, for example the additional phase shift	
	of a current clamp.	
Physical device	Hardware, device (RS232, printer, GPIB).	
Plot function	Mode in which cycle values (e.g. voltage, frequency,) are	
	displayed over time.	
Power	The energy of a time interval divided by the internal time	
	(e.g. cycle time); so the power is always an averaged value!!	
Power factor	Relation between active and apparent power.	
Power measuring channel	⇒ Channel.	
Power supply	Source which provides the necessary voltage.	
Pretrigger	Time before the trigger condition, while which sample val	
	are stored.	
Printer header	Upper line of the printer like a title or headline.	
Printer output	Socket to connect a printer.	
Processing signal interface	Board with Analogue or Digital outputs.	
Protocol	Arrangements for communication between devices.	
Pulse controlled currents	A modulated current controls the device's power; like in a	

Catchword	Meaning
	hot air fan the rapid fire control.
R	
RAM	Random access memory; you can read and write to this
	memory.
Range	The measuring range defines the biggest measurable signal.
	For best accuracy the range should be used for at least 66%.
Reactive energy	Energy which oscillates between source and load without
	being consumpted.
Reactive power	Average \Rightarrow Reactive energy.
Real measuring time	Time in which the measuring is made, depends on ⇒ cycle
	time and \Rightarrow synchronisation frequency.
Record rate	Ratio in which the sampled values are stored in memory.
Rectified value	The average value of a rectified signal; measured by many
	analogue instruments \Rightarrow form factor.
Remote control	You can control the LMG via a connection to a PC.
Resolution	Resolution is <u>not</u> ⇒ Accuracy!!! In the LMG are two
	resolutions important: the analogue to digital converter has
	16bit resolution, the display has 5 or 6 digit resolution.
Rise time	Time in which the signal rises from zero to the maximum (in
	practice from 10% to 90%).
Rotary knob	Knob used to set up parameters in the meter or move the \Rightarrow
	Cursor.
Rotation speed	Speed of the shaft of a motor; rpm.
RS232 interface	⇒ Serial interface.
RTS/CTS	\Rightarrow Protocol to control the data flow of a \Rightarrow Serial interface.
S	
Safety socket	Connection with high safety against electric shock.
Sample memory	Memory to store the sampled measurement values.
Sample value	Value of a signal measured at a defined time ⇒
	Instantaneous Value.
Sampling frequency	Frequency with which the samples of a signal are taken.
Scaling	Resolution of an axis or factor which has an influence on the
	measured value.
Scope function	In this mode the LMG works like an oscilloscope and
	$displays \Rightarrow Sample values.$
SCPI commands	A standardised set of commands to remote control the
	LMG.

Catchword	Meaning	
Sensors	A small external device which converts a current or voltage	
	to a signal the LMG can measure.	
Serial poll	A PC program can ask every connected instrument in series	
	if it has data to send. Used by \Rightarrow GPIB.	
SHORT headers	Shorter set of commands, equivalent to ⇒ SCPI.	
Short term flicker level	A result of statistical processing of instantaneous flicker	
	level quantities over a time period, which typically equals to	
	10 min.	
Shunt input	Special socket to connect the small voltages of an external	
	shunt to the correct channel.	
Shuttle knob	⇒ Rotary knob.	
Signal coupling	\Rightarrow AC coupling; This coupling affects the measured values.	
Signal source	Where you get a signal from; e.g. frequency generator.	
Slewrate	Relation between the voltage rise and the used time.	
Softkey	This keys change the meaning depending on the menu.	
Software options	Options which can be installed with software.	
Software update	Updates your software of the LMG. Available on the	
	homepage: www.zes.com.	
Status byte register	Register in which several flags are set according to the status	
	of the LMG.	
String	Characters lined up in a row.	
Sub menu	A subdivision of a menu.	
Synchronisation	Periodic signals have to be measured for an integer number	
	of periods. So the LMG must synchronise it's measuring to	
	the signal to get stable values.	
System time	Main time of the meter.	
Т		
Table	Special format for output of measuring values in a table.	
Terminal	Each device which takes an account on a data transfer.	
Terminal program	⇒ Hyperterminal.	
THD values	Total harmonic distortion, relation of the harmonics of a	
	signal to the fundamental.	
Time depended signals	Signal of which the values change depending on the time.	
Time domain views	Values are displayed over time.	
Total Harmonic Current	Sum of all harmonics starting with 2 nd order.	
Total harmonic distortion	\Rightarrow THD.	
Total harmonic distortion factor	⇒ THD with included noise.	
including noise (THD+N)		

Catchword	Meaning
Transient	A short, unusual event on a signal.
Transient mode	Mode in which events can be recorded.
Trigger condition	The trigger starts depending on this condition.
Trigger level	Level on which the trigger starts.
Trigger signal	Signal which gives the trigger event.
TRMS	⇒ True root mean square.
True root mean square	The average of a squared signal.
V	
Variables	Values calculated by ⇒ Formula Editor.
Visual display	Display what you can see in the moment.
Voltage transformers	Changes voltage levels.
Z	
Zero crossing	When the signal passes the zero axis. The positive zero
	crossing is usually used for \Rightarrow Synchronisation.
Zoom	Zoom in: enlarge the display
	Zoom out: reduce the visual display.

16 Common Index

*	
*RST Default value	133
/	
/nquery//qonly/	
<	
data	130
1	
100 harmonics measuring mode	
\overline{A}	
AC	88; 106
AC	1; 243; 251; 257
ACaccuracy	1; 243; 251; 257 89; 90
AC	1; 243; 251; 257 89; 90 89
AC	1; 243; 251; 257 89; 90 89 88; 90
AC	1; 243; 251; 257 89; 90 88; 90 88; 90
AC	1; 243; 251; 257 89; 90 88; 90 49 49
AC	1; 243; 251; 257 89; 90 88; 90 49 55; 261; 262 56; 261; 262
AC	1; 243; 251; 257 89; 90 88; 90 49 55; 261; 262 56; 261; 262
AC	1; 243; 251; 257 89; 90 88; 90 49 55; 261; 262 56; 261; 262 88 89; 90
AC	1; 243; 251; 257 89; 90 88; 90 49 55; 261; 262 56; 261; 262 89; 90
AC	1; 243; 251; 257 89; 90 88; 90 49 55; 261; 262 56; 261; 262 88; 90 89; 90
AC	1; 243; 251; 257 89; 90 88; 90 55; 261; 262 56; 261; 262 88 89; 90 89; 90 89; 90 89; 90
AC	1; 243; 251; 257 89; 90 88; 90 56; 261; 262 56; 261; 262 88; 90 89; 90 89; 90 89; 90 41
AC	1; 243; 251; 257 89; 90 88; 90 55; 261; 262 56; 261; 262 88; 90 89; 90 89; 90 89; 90 89; 90
AC	1; 243; 251; 257 89; 90 88; 90 56; 261; 262 56; 261; 262 88 89; 90 89; 90 89; 90 89; 30; 77 41 82 251
AC	1; 243; 251; 257

\overline{B}
basic wave
battery
BMP2PC
C
calculating the measuring error241
-
calculation of measuring values83; 105; 114; 120
calibration
capacitance against earth
capacitance between U and I
CE-flicker measuring mode113
channel separation256
charge89
colours51
COM A228
COM B
ComA50
ComB
Commands
common mode error
condition instruction
configuration
default70
load70
save
configurations
saving and restoring70
connection of the LMG450
connectors
further
constants
contrast
coupling
coupling mode
crest factor
current47; 87; 93; 105; 107; 115; 116; 120; 122
sum90
current ranges
current sensor
external
current sensors

Common Index LMG450

40		
custom	$oldsymbol{F}$	
Custom menu		
cycle77	factory settings	37
	fans	251
\overline{D}	faq	241
	features and application areas	23
D121	filter	79; 104; 126; 259
data	hf rejection	259
import237	flicker	116
data logging	flicker mode	113
date date	floppy disk drive	236
setup of51	floppy drive	231
dc	fluctuating harmonics	104
DC value	form factor	88
default	format	
	output	234
default settings	formula editor	60
Default value 133	freeze	47
definition of measuring values83; 105; 114; 120	frequency input	68
delete	frequency inputs	261; 263
setup	Frequency measuring	
digital inputs	frequently asked questions	
digital outputs	Fresnel diagramm	
dimensions	front panel	
display	function fault	
display of values	functional block diagram	
dmax	computing unit	273
	current channels	
\overline{E}	LMG450	
L	processing signal interface	
-1:4	voltage channels	
editor	functions	
efficiency 68	fundamental	
EN61000-3-2	further connectors	
EN61000-3-3	fuse	
EN61000-4-15	1430	
end of logging		
energy	$oldsymbol{G}$	
ENTER		
entering identifiers and text	general	23
entering numerical values	general handling	
Environment variables	general menues	
error messages	general set-up	
ESC	globals tab	,
evaluation of harmonics	measuring menu	77: 103: 113: 119: 125
EXCEL	Glossary	
expressions 62	GPIB	
ext. current input	grammar	
extended100	graph	
external current sensor	graphical display	
External Synchronisation (Sync.)	group A/B tab	75, 107, 117, 125, 120
	measuring menu	78. 104. 125
	range menu	
	group concept	
	510up concept	

H		L45-O3	55; 261
11		L45-O4	113
handling	25	L45-O5	125; 264
harmonic mode		L45-O6	31; 40
harmonics		L45-O7	264
		L45-O8	119
header HF rejection filter		L45-Z13	267
HF rejection filter	239	limits	107
		Linked values	31; 84
Ī		list data	130
_		Local variables	63
Ι	49	logging	101; 111; 117; 123; 128; 231
I*		logging profiles	232
identifiers		long term flicker	114
IEC 625		long time evaluation	104; 108
IEC61000-3-2			
IEC61000-4-15		17	
IEEE		M	
IEEE488			
IEEE488.2	229	maintenance	250
IEEE488.2 commands			267
IF/IO			48
impedance	89		ents43
import of data			nd high voltage systems44
input resistance		Measurements at middle a	
inrush current			45; 46
installation	37		77; 103; 113; 119; 125
instructions	61		257
instructions and warnings	19		255
instrument controls) for star to delta conversion
int. time	48	· •	40
Int. val	116	_	suring efficiency of 3/1 phase
int. value	47		39
integrated values	89	· ·	suring efficiency of 3/3 phase
integration	94; 268	•	42
start	95		cal line applications using the
stop	95	•	38
interface settings	53		external current sensor42
interface testing	223		77; 103; 113; 125
interfaces	53; 129	measuring menu	77, 102, 112, 110, 125
intervals			77; 103; 113; 119; 125
output	233	• .	78; 104; 125
		measuring mode	110
77			119
K			113
			77
keywords	64		103
\overline{L}	_		81; 105; 114; 120; 128
L		measuring values	83; 105; 114; 120
I 45 O1	100		236
L45-O1		·	
L45-O12		•	231
L45-O15	258	menu	

Common Index LMG450

user defined59	processing signal interface55; 261
messages	Pst115
error	
misc	
miscellaneous	
MotorTorque-SOFT option68	
	qonly129
	-
N	R
New menu tab	
normal measuring mode77	range
nquery	0.4
null modem	
numerical values	group A/B tab81
	sense/more tab82
	ranges
0	reactive energy89; 90
	reactive impedance89
operators65	reactive power88; 90
option	reading memory cards with a laptop236
L45-O1129	rear panel48
L45-O12258	rectified value88
L45-O15258	remarks66
L45-O355; 261	remote control129
L45-O4113	reset37; 70
L45-O5125; 264	R _{sce}
L45-O631; 40	RST Default value133
L45-O7264	
L45-O8119	<u> </u>
MotorTorque-SOFT68	\boldsymbol{S}
options	
options key58	
output devices232	
output formats	
output intervals233	
overload capability255	
	SCPI129
P	script editor60
r	condition instruction62
	constants62
parallel Port	•
PE	1
peak-peak value	
phase error	_
physical devices	_
plot function	
Plt	•
Pmom	1
power47; 88; 90; 93; 106; 108; 116; 122	
power factor	
prCE-harmonic measuring mode	
print/log	
printer	
printing scripts68	sensor input49

short term flicker	113	trms	87
software update	252	true root mean square	87
spectrum	109		
speed and torque calculation	68	**	
star to delta conversion	28; 31; 84	$oldsymbol{U}$	
start	47		
start of logging	231	U	49
status	47	U*	
status line	50	unpacking and putting into operation	
stop	47	update	252
storage media	236	usage of the manual	24
storage of values	231	user defined menu	59
memory card and printer 101; 111; 11	17; 123; 128	User defined tab	59
suffix	129		
sum		¥7	
current	90	$oldsymbol{V}$	
voltage	90		
sync		Values from single measuring	87
connector		variables	63
pin configuration		Vars tab	59
signal level		vector function	99
signals		voltage47; 87; 93; 105; 107; 115;	116; 120; 122
Synchronisation	200	sum	90
external	77: 265	voltage ranges	255
synchronised measurements	,		
syntax		***	
system design		$oldsymbol{W}$	
system design	203		
		weight	253
T		Wiring	
		'2+2 Channels'	29; 30; 83
technical data	253	'2+2, UΔI*->UΔIΔ'	33; 86
testing the interface		'2+2, UΔI*->U*I*'	34; 87
tests according EN61000-3-2		'3+1 Channels'	29; 83
tests according EN61000-3-3		'3+1, UΔI*->UΔIΔ'	32; 85
text		'3+1, UΔI*->U*I*'	
time		'3+1, U*I*->UΔIΔ'	32; 85
setup of	51	'4+0 Channels'	
Timebase			
torque calculation			
_		Z	
total harmonic distortion			
total values		zero adjustment	251
transformer adjustment			
Transient mode	125		

17 Interface command index

*
*CLS131
*ESE131
*ESR?132
*IDN?132
*OPC132
*OPC?133
*PRE133
*RST133
*SRE134
*STB?134
*TRG
*TST?134
*WAI
/
/nquery/130
/qonly/129
:
CALCULA.
:CALCulate :ENVironment135
:FORMula
[:DEFine]
:LIMit
:CLASs136
:DMAX
:FCURrent
:FVERsion137
:PFACtor138
:POWer138
:RSCE138
:SYSTem138
:VERSion139
:ZREF139
:ZTESt139
:DISPlay
:CONTrast140
:RESet140
:FETCh
[:SCALar]

:CURRent	
:AC?	141
:CFACtor?	141
:DC?	142
:FFACtor?	142
:FSCale?	142
:INRush?	142
:MAXPk?	143
:MINPk?	143
:PHASe?	
:PPEak?	
:RECTify?	
:RUSed?	
[:TRMS]?	
:CYCLe	
:COUNt?	144
:SNUMber?	
:TIME?	
:DINPut?	
:ENERgy	
:APPArent?	146
:CHARge?	
:REACtive?	
:TIME?	
[:ACTive]?	
:FLICker	
:LTRemain?	150
:PHWave?	151
:SOURce	
:APMoment?	151
:DC?	152
:DELTat?	
:DMAX?	
:DTMViolation?	
:HWTRms?	153
:PLT?	
:PMOMentary?	153
:PST?	
:RESult?	
:STATe?	154
:STRemain?	154
[:EUTest]	
:APMoment?	148
:DC?	148
:DELTat?	148
:DMAX?	148
·DTMViolation?	149

:HWTRms?	149	:PPHase?	169
:PLT?	149	:STATe?	169
:PMOMentary?	149	:THDistort?	169
:PST?		:POWer	
:RESult?	150	:AACTive?	170
:FREQuency		:AAPParent?	
:FINPut?	155	:APParent?	
:SAMPle?		:AREactive?	
[:SSOurce]?		:FSCale?	
:HARMonics	133	:ICAPacity?	
:AMPFactor?	156	:PFACtor?	
:AMPower?		:PHASe?	
:APFactor?		:REACtive?	
:APOWer?		[:ACTive]?	
:CDResult?		:RESistance	170
:CURRent	137	:ASResist?	172
	150		
:AAMPlitude?		:IMPedance?	
:AFUNdamental?		:RSIMpedance?	
:AMPLitude?		:SSYStem?	
:FPRotz?		:VARiable?	
:FRESult?		:VNAMe?	174
:GFResult?		[:VOLTage]	
:IAMPlitude?		:AC?	
:LIMit?		:AINPut?	
:LTResult?		:CFACtor?	
:OLIMit?		:DC?	
:PHASe?		:FFACtor?	
:POHarmonic?		:FSCale?	
:POLimit?		:MAXPk?	176
:SAVerage?	162	:MINPk?	176
:SMOothed?	162	:PHASe?	177
:STATe?	162	:PPEak?	177
:THARmonic?	163	:RECTify?	177
:THDistort?	163	:RUSed?	177
:LTRemain?	163	[:TRMS]?	178
:POWer		:FORMat	
:ACTive	164	:DATA	178
:APParent	164	:GTL	221
:REACtive	164	:INITiate	
:VOLTage		:CONTinuous	179
:IAMPlitude?	166	:COPY	179
[:VOLTage]		:IMMediate	180
:AMPLitude?	165	:INPut	
:GFResult?	165	:COUPling	181
:HWCFactor?	166	:INSTrument	
:LIMit?	166	:SELect	181
:LTResult?	167	:MEMory	
:MAMPlitude?	167	:FREeze	182
:MAXCfactor?		:SSIZe	
:MAXPhi?		:READ	
:MINCfactor?		[:SCALar]	
:MINPhi?		:CURRent	
:OLIMit?		:CFACtor?	1/11
:PHASe?		:DC?	
.1 11/100:	100	.DC:	142

:FFACtor?142	:AMPower?	156
:FSCale?142	:APFactor?	156
:INRush?142	:APOWer?	157
:MAXPk?143	:CDResult?	157
:MINPk?143	:CURRent	
:PHASe?143	:AAMPlitude?	158
:PPEak?143	:AFUNdamental?	158
:RECTify?143	:AMPLitude?	158
:RUSed?144	:FPRotz?	
[:TRMS]?144	:FRESult?	159
:CYCLe	:GFResult?	159
:COUNt?144	:IAMPlitude?	160
:SNUMber?145	:LIMit?	
:TIME?145	:LTResult?	
:DINPut?145	:OLIMit?	
:ENERgy	:PHASe?	
:APParent?146	:POHarmonic?	
:CHARge?146	:POLimit?	
:REACtive?	:SAVerage?	
:TIME?147	:SMOothed?	
[:ACTive]?146	:STATe?	
:FLICker	:THARmonic?	
:LTRemain?150	:THDistort?	
:PHWave?	:LTRemain?	
:SOURce	:VOLTage	102
:APMoment?151	:IAMPlitude?	166
:DC?	[:VOLTage]	100
:DELTat?152	:AMPLitude?	165
:DMAX?	:GFResult?	
:DTMViolation?	:HWCFactor?	
:HWTRms?	:LIMit?	
:HW TRIIS?	:LTResult?	
:PMOMentary?	:MAMPlitude?	
:PMOWERRARY?	:MAXCfactor?	
:RESult?	:MAXPhi?	
:STATe?	:MINCfactor?	
:STRemain?	:MINPhi?	
[:EUTest]	:OLIMit?	
:APMoment?	:PHASe?	
:DC?	:PPHase?	
:DELTat?148	:STATe?	
:DMAX?148	:THDistort?	169
:DTMViolation?	POWer	1.64
:HWTRms?	: APParent?	
:PLT?	:ACTive?	
:PMOMentary?149	:REACtive?	164
:PST?	:POWer	150
:RESult?150	:AACTive?	
:FREQuency	:AAPParent?	
:FINPut?	:APParent?	
:SAMPle?	:AREactive?	
[:SSOurce]?155	:FSCale?	
:HARMonics	:ICAPacity?	
:AMPFactor?156	:PFACtor?	172

:PHASe?	172	:INTegral	
:REACtive?	172	:DATE	192
[:ACTive]?	170	:INTerval	192
:RESistance		:MODE	192
:ASResist?	173	:STATe?	193
:IMPedance?	173	:TIME	193
:RSIMpedance?	173	:RPValues	193
:SSYStem?		:SWEep	
:VARiable?		:TIME	194
:VNAMe?		:TRANsient	
[:VOLTage]		:ACRegister	195
:AC?	175	:ALIMit	
:AINPut?	175	:BLIMit	
:CFACtor?	175	:CHANnels	196
:DC?		:DURation	
:FFACtor?		:OCRegister	
:FSCale?	176	:PRETrigger	
:MAXPk?		:RTIMe	
:MINPk?		:SIGNal	
:PHASe?		:SRDT	
:PPEak?		:SRDY	
:RECTify?		:SROVer	
:RUSed?		:VOLTage	190
		:IDENtify	100
[:TRMS]? :SENSe	176	:RANGe	190
			100
:AINPut	102	:AUTO	
:FSCale		:LINTern?	
:ZERO		[:UPPer]	
:ARON	183	:SCALe	200
:AVERage	404	:WAVeform	•
:COUNt	184	:CYCLes	
:CURRent		:IUPDate	
:DETector		:SATRigger?	
:IDENtify?	185	:SBTRigger?	
:RANGe		:SCTRigger?	
:AUTO		:SRATe?	
:LINTern?		:SSAMples	
[:UPPer]	186	:WAVE?	
:SCALe	186	:WIRing	
:FILTer		:ZPReject	203
:AFILter	187	:SOURce	
[:LPASS]		:DIGital	
[:STATe]	187	:CONDition	204
:FINPut		:LIMit	204
:SCALe	188	:VALue	204
:FLICker		:VOLTage	
:PERiods	189	:SCALe	
:STIMe	189	:FSCale	205
:HARMonics		:ZERO	205
:FDIV	190	:VALue	206
:ISTart	190	:STATus	
:REFerence	190	:OPERation	
:SMOoth	191	:CONDition?	206
:TIME	191	:ENABle	206

:NTRansition	207	active	
:PTRansition	207	energy	146
[:EVENt]?	207	power	170
:PRESet	207	active power	
:QUEStionable		harmonics	164
:CONDition?	208	active serial resistance	173
:ENABle	208	actualisation	
:NTRansition	209	measuring values	179; 180
:PTRansition	209	AIHI	183
[:EVENt]?	208	AILO	183
:SYSTem		Ain	175
:BEEPer		AIVA?	175
:IMMediate	209	amplitude	
:DATE	210	current harmonics	158
:ERRor		voltage harmonics	165
:ALL?	211	analogue input	
:COUNt?	212	full scale	183
[:NEXT]?	212	voltage	
:HELP		zero position	
:HEADers?	212	analogue output	
:SHEaders?		full scale	205
:KEY		zero position	
:LANGuage		analogue outputs	200
:OPTions?		value	206
:PHEader		AND condition register	200
:TIME		transients	195
:VERSion?		anti-aliasing	
:TRIGger	210	AOHI	
:ACTion	216	AOIX	
:ICURrent		AOLO	
:INTerval	217	apparent	205
:RESet	217	energy	1/16
:STARt		power	
:STOP		•	1/1
[:SEQuence]	216	apparent power harmonics	164
:COUPle	219	ARON	
:EXTend	216	AVER	
FILTer	210	average	
HYSTeresis		Č	
		average active power	170
LEVel		average amplitude current harmonics	150
SOURce			
:SOURce	221	average apparent power	
		average reactive power	
<		averaged momentary flicker level	148; 151
data	130	\overline{B}	
\inst\ uata	130	D	
		BEEP	200
\overline{A}			
		beeper	209
AC			
current	141	\overline{C}	
voltage			
action		Calculations	
action		Calculations	

environment	135	range usage	144
capacitive	171	rectified	143
change command set	214	reset inrush	217
channels		scaling	186
transients	196	smoothed averaged harmonic	162
charge	146	smoothed harmonic	162
class D result	157	THD	163
clear		total harmonic	163
error/event queue	131	trigger inrush	217
event registers		TRMS	
command set		current sensor	
change	214	identify	185
condition		CYCL	
digital outputs	204	cycle	
CONT		sample counter	
continuous execution		cycle time	
contrast		CYCR?	
COPY		CTCR?	143
COUNT?			
	144	\overline{D}	
counter	1.1.1		
measuring cycle		d(t)	149, 140, 152
COUPL	218	* *	
coupling		data output format	
signal	181	date	
coupling mode		start energy	
trigger		system	
crest factor	166	DC	
current	141	current	
maximum	167	voltage	
minimum	168	dcl	
voltage	175	dcs	152
current		device	
AC	141	reset	
autorange	186	DIFQ?	155
crest factor	141	DIFS	188
DC	142	DigFrq	155
fluctuating harmonics result	159	digital inputs	145
form factor	142	digital outputs	
full scale	142	condition	204
harmonic phases	161	limits	204
harmonics amplitude		value	204
harmonics average amplitude		display	
harmonics limit		contrast	140
harmonics maximum duration		default values	140
harmonics result		reset	140
inrush		DISR	140
interharmonics		DIST?	
maximum		dmax	
maximum averaged fundamental		dmax limit	
·		dmaxl	
minimum		dmaxs	
partial odd harmonic		DOCO	
peak peak		DOIX	
phase angle		DOLI	
range	186	DOPT	

dt		SHORT	225
transients	197	execution	
dtl	148	continuous	179
dts	152	extended trigger	
dy		filter	219
transients	198	hysteresis	220
		level	220
		source	220
\boldsymbol{E}		external shunt input	185
EDIT	139		
edition		$oldsymbol{F}$	
flicker standard	137		
harmonic standard	139	f	155
EI?	146	FAAF	187
energy		FDIV	190
active	146	FILT	187
apparent	146	filter	187
reactive	147	anti-aliasing	187
reset	217	extended trigger	
start	218	FLCF?	
start date	192	FLCN?	
start time	193	FLCX?	167
state	193	FLDC?	148
stop		FLDL	
time interval		FLDT?	
ENV		FLDX?	
environment		flicker	110
EP		averaged momentary level	148. 151
EP?		d(t)	
EO		dc	
EO?		dmax	· · · · · · · · · · · · · · · · · · ·
ERR?		half wave TRMS	·····
ERRALL?		momentary level	
ERRCNT?		periods	
	212	Plt	
error	212		
oldest	212	Pst	,
error/event queue	121	remaining long time	
clear		remaining short time	
errors		result	
number of		short term measuring time	
ES		start	
ES?		state	
EVAL	136	stop	
evaluation		Zref	
harmonics		Ztest	139
event duration transients	196	flicker standard	
event registers		version, edition	
clear	131	FlkPer	
Event Status		FLLT?	
Enable Register		FLMO?	
Register	132	FLMS?	
example		FLMV?	149
basic		FLPH?	
SCPI	223	FLPN?	168

FLPS	189	\overline{G}	
FLPX?	167	O	
FLRE?	150	CED 09	202
FLRM?	149	GFRQ?	
FLST?	150	GMEM	
FLTR?	150	GMUL	
FLUP?	169	GTL	221
FNRM	137		
FORM	136	\overline{H}	
form factor		11	
current	142	1.10	
voltage		half wave	1.00
format		crest factor	
data output	178	half wave power	
Formula Editor		half wave TRMS	149; 153
environment		harmonic limit	
	133	partial odd	162
freezes	192	harmonic limits	
scope		fundamental current	137
FREQ?	155	power	138
frequency		power factor	138
processing signal interface		rsce	138
sample		harmonic standard	
synchronisation source		version, edition	139
frequency divider ratio	190	harmonics	
frequency input		active power	164
scaling	188	apparent power	164
FRMT	178	average current amplitude	
FRZ	182	class D result	
FSDC?	152	current amplitude	158
FSDT?	152	current check result	
FSDX?	152	current limits	,
FSI?	142	current phases	
FSLT?	153	current result	
FSMO?	151	evaluation	
FSMS?	153	fluctuating current result	
FSMV?	152	interharmonics current	
FSP?	171	interharmonics voltage	
FSRE?	154	maximum amplitude voltage	
FSRM?	153	maximum averaged fundamental current	
FSST?	153	maximum duration	
FSTA?	154	measuring time	
FSTR?	154		
FSU?		partial odd current	
FTIM		reactive power	
full scale		remaining long time	
analogue input	183	smoothed averaged current	
analogue output		smoothed current	
current		smoothing	
		THD current	
power		THD voltage	
voltage	1/0	total current	
fundamental current	127	voltage amplitude	
harmonic limits	13/	voltage check results	
		voltage limit	166
		voltage phases	168

voltage result	167; 168	Icf	141
HEAD?	212	ICF?	141
headers		Idc	142
SCPI	212	IDC?	142
SHORT	213	identification	132
HENS?	157	Identify current sensor	185
HFMX?	159	Identify voltage sensor	198
HIAM?	158	IDNI?	185
HIAS?	162	IDNU	198
HIAV?	158	IEXT	185
HIFL?		Iff	142
HIFM?		IFF?	
HIGF?	159	Ih	158
HIHD?		IILS	
HILM?		Iinr	
HILT?		IINR?	
HIMA?		IL	
HIOV?		IMAX?	
HIPH?		IMIN?	
HIST?		impedance	
HIZA?		reactive serial	
HLIP?		reference	
		test	
HLTR?			
HNRZ		INCA?	
HPAM?		Individual Status Query	
HPAV?		inductive	
HPFA?		INIM	
HPFM?		initiate measuring	
HPM?		inrush current	
HPOC?		trigger	
HQAM?		INTD	
HREF		integration mode	192
HSAM?		interharmonics	
HTHC?		current	
HTIM	191	start	
HUAM?	165	voltage	
HUGF?	165	internal shunt input	185
HUHD?	169	interval	
HULM?	166	energy	192
HULT?	167	INTI	192
HUMX?	167	INTM	192
HUOV?	168	INTR?	147
HUPH?	168	INTS?	193
HUST?	169	INTT	193
HUZA?	166	IP	161
hysteresis		IPHI?	143
extended trigger	220	Ipkn	143
		Ipkp	143
		Ipohc	161
I		Ipp	
		IPP?	
Iac	141	IREC?	
IAC?	141	Irect	
IAM	186	IRNG	
laver	158		

Interface command index LMG450

ISCA	186	harmonics	191
Iscal	186	short term flicker	189
ISO	137	measuring values	
Ithc	163	actualisation	179; 180
Ithd	163	memory size	182
Itrms	144	minimum	
ITRMS?	144	current	143
		voltage	
-		minimum crestfactor	
K		voltage	168
		minimum phase	
KEY	213	peak value voltage	168
		MODE	
		integration	
L		measuring	
		momentary flicker level	
LEN	221	•	
level		averaged Mtime	
extended trigger	220	withine	143
limit			
current harmonics	160	\overline{N}	
damx		1,	
partial odd harmonic		new information about waveform	201
voltage harmonics			
limits		nquery	
digital outputs	204	number of errors	
transients		NVAR?	1/4
list	1/3		
		0	
ranges current	186		
voltage		oldest error	212
list data			212
local state		Operation Status Condition Register	206
local state	221	Enable Register	
		Event Register	
\overline{M}		_	
- 		Negative Transition Register	
maximum		Positive Transition Register	207
averaged fundamental current	158	options	215
current		installed	215
voltage		over x	100
maximum amplitude voltage harmonics		transients	
maximum crest factor	107	OvrI	
	167	OVRI?	
voltage maximum duration	107	OvrU	
	150	OVRU?	177
current harmonics	159		
maximum phase	1.67	\overline{P}	
peak value voltage		1	
maximum smoothed power		D.	
maximum smoothed power factor	156	P	
measuring cycle		P?	
real time		Parallel Poll Enable Register	
measuring cycle counter		Partial odd harmonic current	
measuring mode	181	Partial odd harmonic limit	162
measuring time		peak peak	

current	143	transients	197
voltage	177	printer header	215
periods		processing signal interface	
flicker	189	frequency	155
PF	172	PSO	138
PF?	172	Pst	150; 153
PFSO	138	Pstl	150
Ph	164	Psts	153
phantom values			
reject	193		
phase		${\it Q}$	
current harmonics	161		
Fresnel		q	146; 172
maximum peak voltage		Q?	
minimum peak voltage		Qh	164
reference		Qm	
voltage harmonics		QM?	
phase angle		qonly	
current		Questionable Status	
	· · · · · · · · · · · · · · · · · · ·	Condition Register	208
voltage peak		Enable Register	
PHDR		Event Register	
PHI		Negative Transition Register	
PHI?			
Plt	· · · · · · · · · · · · · · · · · · ·	Positive Transition Register	209
Pltl			
Plts		\overline{R}	
Pm			
PM?	170	range	
Pml	149	current	196
Pmoml		voltage	
Pmoms		_	133
Pms	153	range usage current	1.4.4
power			
active	170	voltage	1//
apparent	171	ranges	106
average active	170	current	
average apparent	170	voltage	199
average reactive	171	ratio	
capacitive	171	frequency divider	190
full scale	171	reactive	
half wave	151	energy	
harmonic limits	138	reactive power	
inductive	171	harmonics	
maximum smoothed	156	reactive serial impedance	
reactive	172	real measuring time	145
smoothed	157	record time	
power factor		transients	197
harmonic limits		rectified	
maximum smoothed		current	143
smoothed		voltage	177
PRES		reference	
Preset	207	phase	190
operation and query registers	207	reference impedance	
pretrigger	207	register	
predigger		Event Status	132

Event Status Enable	131	sample cycles	200
Operation Status Enable	206	number	200
Operation Status Event		sample values	202
Operation Status Negative Transition	207	memory size	182
Operation Status Positive Transition		saving ratio	
Parallel Poll Enable	133	sample values after trigger	
Preset		sample values before trigger	
operation and query		sample values stored in memory	202
Questionable Status Condition		sampling frequency	
Questionable Status Enable	208	SATR?	201
Questionable Status Event		SBTR?	201
Questionable Status Negative Transition	209	scaling	
Questionable Status Positive Transition	209	current	
Service Request Enable	134	frequency input	188
Status Byte	134	voltage	200
reject phantom values	193	scope	
remaining long time		freeze	182
flicker	150	SCPI	
harmonics	163	example	223
remaining short time	154	version	216
remote - operation	221	SCPI headers	212
remote state	221	script editor	136
reset	217	SCTC?	145
device	133	SCTT?	201
display	140	self test	134
energy	217	sensor	
resistance		identify current	185
active serial	173	identify voltage	198
impedance	173	Service Request Enable Register	134
result		Sh	164
class D		SHEAD?	213
current fluctuating harmonics	159	SHORT	
current harmonics	161	example	225
flicker	154	SHORT headers	213
flicker measuring	150	short term flicker measuring time	189
harmonics current check	159; 162	shunt input	
harmonics voltage check	165; 169	internal/external	185
voltage harmonics	167; 168	signal	
RLS?	173	transients	197
RngI	186	signal coupling	181
RngU	199	Sm	170
RSCE	138	SM?	170
Rser	173	SMOO	191
RSER?	173	smoothed	
running integration time	147	average harmonic current	162
		harmonic current	162
		smoothed power	157
S		smoothed power factor	156
		smoothing	
S	171	harmonics	191
S?	171	SMPL?	155
SACT	201	SOC?	206
sample counter		SOE?	207
trigger	201	SOEN	206

SONT207	running integration	147
SOPT207	short term flicker measuring time	189
source	start energy	193
extended trigger220	system	215
SQC?208	time interval	
SQE?208	energy	192
SQEN208	TLIA	
SQNT209	TLIB	
SQPT209	TOCR	
SSAM202	Total harmonic current	
START	TPRE	
energy218	transients	
flicker	AND condition register	195
start date	channels	
energy	dt	
start time energy	dy	
startup current	event duration	
reset	limits	
	OR condition register	
state		
energy	over x	
flicker	pretrigger	
local	record time	
remote221	signal	
Status Byte Register	TRCH	
STOP218	TRDE	
energy218	TRDF	219
flicker218	TRDH	220
supply system	TRDL	220
SYNC221	TREC	197
synchronisation	Trigger	134
source	coupling mode	218
synchronisation source	hysteresis	220
frequency155	inrush current	217
syntax129	level	220
SYSD138	sample counter	201
system	source	220; 221
supply	triggerung	
system date210	filter	219
system time215	TRMS	
•	current	144
_	half wave	
T	voltage	
	TSRC	
TACR195	TORC	
TDT197		
TDU198	$oldsymbol{U}$	
TDUR196		
TDX	Uac	175
test impedance	UAC?	
THD	UAM	
current	Ucf	
voltage	UCF?	
time	Udc	
cycle	UDC?	
measuring harmonics191	Uff	176

UFF?	176	maximum crest factor	167
Uh	165	maximum harmonics amplitude	167
Uhwl	149	maximum phase	167
Uhws	153	minimum	176
UILS	199	minimum crestfactor	168
UL	166	minimum phase	168
UMax	167	peak peak	177
UMAX?	176	peak phase angle	169
UMIN?	176	phase angle	177
UP	168	range	199
UPHI?	177	range usage	177
Upkn	176	rectified	177
Upkp	176	scaling	200
Upp	177	THD	169
UPP?	177	TRMS	178
UREC?	177	voltage sensor	
Urect	177	identify	198
URNG	199	•	
USCA	200		
Uscal	200	$oldsymbol{W}$	
Uthd			
Utrms		Wait	135
UTRMS?		WAVE?	202
		waveform	
		new information about	201
V		sample values	202
		sample values after trigger	
value		sample values before trigger	
analogue outputs	206	sample values stored in memory	
digital outputs		WIRE	
VAR?		wiring	
variables			
access by name		-	
version		\boldsymbol{X}	
flicker standard	137		
harmonic standard		Xser	173
voltage	137	XSER?	
AC	175		
analogue input			
autorange		Z	
crest factor			
DC		Z	173
form factor		Z?	173
		zero point rejection	203
full scale		zero position	
harmonics amplitude		analogue input	183
harmonics limit		analogue output	
harmonics phase		ZREF	
harmonics result		ZTST	
interharmonics			
maximum	176		